News

  • Meet the team: Thomas Janssen, Yuquan Qu, Lucas Diaz, Max van Gerrevink, Sonja Granqvist, and Sander Veraverbeke (from left to right).

    First Stop: Sampling the 2023 Fires in Quebec

    This blog post is the first in a series to come. Our team, the Climate & Ecosystems Change research group from the Vrije Universiteit Amsterdam, is working in collaboration with the Environmental Change Research Unit from the University of Helsinki for a summer with lots of fire field work, science, and adventure. On this journey, our first stop was the Quebec province in Canada. I’m writing this post after our last day of fieldwork here.

  • Two NASA aircraft, including the P-3 shown here, will be flying over Baltimore, Philadelphia, Virginia and California between June 17 and July 2, to collect data on air pollutants and greenhouse gas emissions. Credit: (NASA/ Zavaleta)

    NASA-Led Mission to Map Air Pollution Over Both U.S. Coasts

    This summer between June 17 and July 2, NASA will fly aircraft over Baltimore, Philadelphia, parts of Virginia, and California to collect data on air pollutants and greenhouse gas emissions. The campaign supports the NASA Student Airborne Research Program for undergraduate interns.

  • Two NASA aircraft are taking coordinated measurements of clouds, aerosols and sea ice in the Arctic this summer as part of the ARCSIX field campaign. In this image from Thursday, May 30, NASA’s P-3 aircraft takes off from Pituffik Space Base in northwest Greenland behind the agency’s Gulfstream III aircraft. Credit: NASA/Dan Chirica

    NASA Mission Flies Over Arctic to Study Sea Ice Melt Causes

    It’s not just rising air and water temperatures influencing the decades-long decline of Arctic sea ice. Clouds, aerosols, even the bumps and dips on the ice itself can play a role. To explore how these factors interact and impact sea ice melting, NASA is flying two aircraft equipped with scientific instruments over the Arctic Ocean north of Greenland this summer. The first flights of the field campaign, called ARCSIX (Arctic Radiation Cloud Aerosol Surface Interaction Experiment), successfully began taking measurements on May 28.

  • The NASA DC-8 aircraft lifts off on a flight from U.S. Air Force Plant 42 in Palmdale, California, at sunset. The DC-8 is based at NASA’s Armstrong Flight Research Center Building 703, which is located on Plant 42. NASA/Carla Thomas

    NASA Teammates Recall Favorite Memories Aboard Flying Laboratory

    After flying more than three decades and 158 science campaigns, just one flight remains. NASA’s DC-8 Airborne Science Laboratory will make its final flight May 15 to Idaho State University in Pocatello, Idaho, where it will be used to train future aircraft technicians by providing real-world experience in the college’s Aircraft Maintenance Technology Program.

  • Kirsten Boogaard, Deputy Project Manager for the DC-8 aircraft, leads and manages project planning, integration and resources for airborne science missions since 2020. NASA/Ken Ulbrich

    Meet NASA Women Behind World’s Largest Flying Laboratory

    NASA’s DC-8 aircraft – the world’s largest flying science laboratory – began its science missions in 1987 and since then, has flown in service of the science community over places like Antarctica, Greenland, and Thailand. Aircraft like the DC-8 have enabled scientists to ask questions about life on Earth and explore them in a way that only NASA’s Airborne Science program can make happen. After 37 years, the DC-8 will retire to Idaho State University, where it will serve as an educational tool for students.

    As the DC-8 approaches its retirement, we highlight five of the women who have made the aircraft and program a success. Kirsten Boogaard, Nicki Reid, Carrie Worth, Erin Waggoner, and Wendy Bereda of NASA’s Armstrong Flight Research Center in Edwards, California, are building the legacy of women who are helping pave the way for the next generation.

  • HARP2, short for Hyper Angular Rainbow Polarimeter 2, undergoes calibration testing prior to launch aboard PACE. NASA/Denny Henry

    NASA’s ORCA, AirHARP Projects Paved Way for PACE to Reach Space

    It took the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission just 13 minutes to reach low-Earth orbit from Cape Canaveral Space Force Station in February 2024. It took a network of scientists at NASA and research institutions around the world more than 20 years to carefully craft and test the novel instruments that allow PACE to study the ocean and atmosphere with unprecedented clarity.

  • The Mackenzie River in Canada plays a major role in Arctic climate as warmer fresh water mixes with cold seawater.  This image was taken by the Operational Land Imager on the Landsat 8 satellite on July 18, 2017.

    NASA Selects New Aircraft-Driven Studies of Earth and Climate Change

    NASA has selected six new airborne missions that include domestic and international studies of fire-induced clouds, Arctic coastal change, air quality, landslide hazards, shrinking glaciers, and emissions from agricultural lands. NASA’s suite of airborne missions complement what scientists can see from orbit, measure from the ground, and simulate in computer models.

  • Hazy Skies in a Growing City

    Chiang Mai, the largest city in northern Thailand, is famed for having hundreds of Buddhist temples, some of which date to the city’s founding in the 13th century. This rich history—and easy access to hiking, waterfalls, and hot springs in the surrounding highlands, as well as being the setting of a hit movie in 2012—has turned the city into a hub of tourism that hosts as many as 10 million visitors per year.

  • Grappling with Thailand’s Seasonal Haze

    Each year in January and February, satellites begin to detect waves of smoke and fire in Southeast Asia, particularly in highland forests in Cambodia, Laos, Myanmar, and Thailand. Fire activity continues to increase through March and April, reaches a peak during the height of the dry season, and then fades in May with the start of the rainy season.

    Individual fires are usually small and short-lived. But they are often so numerous that smoke, along with air pollution from rural and urban areas, mixes to produce thick layers of haze that blanket the landscape. Such hazes contain mixtures of small airborne particles called aerosols and gaseous pollutants such as nitrogen dioxide, sulfur dioxide, carbon monoxide, and ozone that degrade air quality and have harmful health effects.

    In spring 2024, an international field campaign—ASIA-AQ (Airborne and Satellite Investigation of Asian Air Quality)—headed to Thailand to take a close look at the haze. During the last two weeks of March 2024, NASA’s DC-8 and Gulfstream III aircraft flew several flights over Chiang Mai, Bangkok, and rural areas surrounding the cities to sample air quality with several sensors. At the same time, satellites observed the haze from above.

  • The DC-8 aircraft returned to NASA’s Armstrong Flight Research Center Building 703 in Palmdale, California, on April 1, 2024, after completing its final mission supporting Airborne and Satellite Investigation of Asian Air Quality (ASIA-AQ). The aircraft and crew were welcomed back with a celebratory water salute by the U.S. Air Force Plant 42 Fire Department. NASA/Steve Freeman

    NASA’s DC-8 Completes Final Mission, Set to Retire

    After 37 years of successful airborne science missions, NASA’s DC-8 aircraft completed its final mission and returned to the agency’s Armstrong Flight Research Center Building 703 in Palmdale, California, on April 1.

  • Langley’s Angelique Demetillo, center, in her flight suit after a flight in the Philippines for the ASIA-AQ mission along with mission partners from the Philippine Department of Environment and Natural Resources (DENR) and Manila Observatory. NASA/Kevin Rohrer

    Langley Celebrates Women’s History Month: The Langley ASIA-AQ Team

    In honor of Women’s History Month, we caught up with the ASIA-AQ team on the other side of the Earth and asked the women from Langley about their inspirations and challenges as scientists. The ASIA-AQ (Airborne and Satellite Investigation of Asian Air Quality) mission is an international cooperative field study designed to address local air quality challenges. ASIA-AQ will contribute to improving the integration of satellite observations with existing air quality ground monitoring and modeling efforts across Asia.

  • NASA Leader Casey Swails Learns About Wildfire Work at NASA Ames. NASA/Brandon Torres

    NASA Leader Casey Swails Learns About Wildfire Work at NASA Ames

    NASA Deputy Associate Administrator Casey Swails views a demonstration on screen in the Airspace Operations Laboratory at NASA’s Ames Research Center in California’s Silicon Valley. Researchers presented the diverse, long-running efforts in aeronautics at Ames that have helped lay the foundation for agency work related to wildfire response.

  • NASA’s DC-8 aircraft takes off from NASA’s Armstrong Flight Research Center Building 703 in Palmdale, California, to conduct test flights as part of the Airborne and Satellite Investigation of Asian Air Quality, or ASIA-AQ mission, that will collect detailed air quality data over several locations in Asia. NASA/Carla Thomas

    NASA Collaborates in an International Air Quality Study

    NASA and international researchers are studying the air quality in Asia as part of a global effort to better understand the air we breathe. In collaboration with Korea’s National Institute of Environmental Research (NIER), the Airborne and Satellite Investigation of Asian Air Quality, or ASIA-AQ mission, will collect detailed atmospheric data over several locations in Asia.

  • DC-8 lifts off from Air Force Plant 42 in Palmdale, Calif. NASA/Carla Thomas

    NASA’s DC-8 to Fly Low-Altitude Over Central Valley, CA

    NASA Armstrong Flight Research Center’s DC-8 aircraft will fly over Central Valley and surroundings areas as part of an air quality field study. Residents in the areas below will see and hear the aircraft as it flies to achieve these measurements.

  • Researchers with the BioSCape campaign collect vegetation data from the Cape of Good Hope in South Africa. The field work, which took place in October and November, was part of an international collaboration that could help inform the capabilities of future satellite missions aimed at studying plants and animals. Adam Wilson

    NASA Helps Study One of the World’s Most Diverse Ecosystems

    NASA satellite and airborne tools aid an international team studying biodiversity on land and in the water around South Africa. An international team of researchers spent October and November 2023 in the field studying one of the world’s most biologically diverse areas – South Africa’s Greater Cape Floristic Region. As part of the effort, researchers used NASA airborne and space-based instruments to gather complementary data to better understand the unique aquatic and terrestrial ecosystems in this region. Their findings will inform the capabilities of future satellite missions aimed at studying plants and animals.

  • NASA Armstrong’s DC-8 aircraft flies over the northwestern U.S. to monitor emissions from Boeing’s ecoDemonstrator Explorer aircraft.  As the largest flying science laboratory in the world, the DC-8 is equipped to collect crucial data about the sustainable aviation fuel and its effects on condensation trail formation. NASA/Jim Ross

    NASA, Partners Explore Sustainable Fuel’s Effects on Aircraft Contrails

    Contrails, the lines of clouds from high-flying aircraft that crisscross the skies, are familiar sights, but they may have an unseen effect on the planet – trapping heat in the atmosphere. Working with Boeing, and other partners, NASA researchers are collecting data to see how new, greener aviation fuels can help reduce the problem.

  • Scott Collis of Argonne National Laboratory, left, and community leader Nedra Sims Fears work to advance urban resilience through science. They collaborated with NASA during the STAQS air quality mission in Chicago. NASA/Kathleen Gaeta

    A Tale of Three Pollutants

    It was a hazy August day on Chicago’s South Side, and Nedra Sims Fears was hosting a small gathering to talk about the air. Interstate-94, which bisects her Chatham neighborhood, hummed nearby. “This was the summer I spent watching summer out my window,” Fears said. 

    That’s because asthma runs in her family, and smoke from wildfires in Canada had wafted into Chicago, making it difficult for her to breathe. Many of her neighbors don’t have air conditioning, which means they don’t have the luxury of shutting their windows against the tiny hazardous particles contained in the smoke.

    Several thousand feet above the Fears’ home, one of the largest flying laboratories in the world circled the skies over Chicago. The plane – NASA’s four-engine DC-8 jet – is a storied research craft. Over the past 25 years it has supported field campaigns across all seven continents. On this August 2023 day, it carried 40 researchers and a pack of scientific instruments investigating air pollution over the cities and pasturelands of the Midwest.

  • NASA Ames’ Contributions to OSIRIS-REx

    NASA’s Langley Research Center in Hampton, Virginia, will manage an experiment taking advantage of the OSIRIS-REx sample arrival to study characteristics of re-entry through an atmosphere. Four aircraft and teams at three ground sites will track the capsule’s trajectory on its way to the surface, using imaging and spectroscopy instruments. Data from the project, called Hypervelocity OSIRIS-REx Reentry Imaging & Spectroscopy (HORIS), will be used to validate and develop planetary entry models. NASA’s Earth Science Project Office (ESPO), based at Ames, will provide operational and shipping support to two international ground teams by setting up work sites at three different locations in northern Nevada.

  • NASA SARP intern Karla Lemus, on left, assists NASA Scientist Emeritus Anne Thompson as she leads NASA SARP East interns, to release an ozone sonde from the parking lot of the VCU Rice Rivers Center on June 16, 2023. Credits: NASA/Angelique Herring

    Surf, Turf, Above Earth: Students Participate in NASA Field Research

    Flying over and tromping through watery landscapes along the East Coast, working alongside NASA scientists, and recording measurements about the air that they’re travelling through – these are not the usual experiences for an undergraduate student. For the 2023 participants in NASA’s SARP East program – short for Student Airborne Research Program – it was part of a summer they won't forget.

  • DC-8 airplane during SARP 2023.

    NASA Student Airborne Research Program 2023: Sky-High Science Learning

    NASA’s Armstrong Flight Research Center hosted undergraduate students for the 2023 Student Airborne Research Program.  An eight-week summer internship program, SARP offers upper-level undergraduate students the opportunity to acquire hands-on research experience as part of a real scientific campaign.  This year SARP, the Student Airborne Research Program, celebrated 15 years of success in the Airborne Science Program. Students worked alongside scientists and aircraft professionals both on the ground and in the sky, using NASA Airborne Science Program’s flying science laboratories, like NASA Armstrong’s DC-8 aircraft.  Outfitted specifically for science research projects, aircraft like the DC-8 help support both students and mission personnel to investigate science questions, aid in the understanding of our environment, and improve life on Earth.

    Learn more about SARP: https://baeri.org/sarp/

  • The joint team that worked on the Airborne Lightning Observatory for Fly’s Eye GLM Simulator (FEGS) and Terrestrial gamma-ray flashes (ALOFT) field campaign takes a break in front of NASA Armstrong’s ER-2 aircraft following its safe return from a mission on July 24. The ALOFT field campaign spent 30 days studying gamma-ray glows and flashes produced from the electric fields of thunderclouds. Credits: NASA

    Global Collaboration Leads to New Discoveries in Lightning Research

    With operations based out of Tampa, Florida, the ALOFT field campaign logged approximately 60 hours of flight time across Central America and the Caribbean. The team used NASA Armstrong’s ER-2 aircraft to fly near thunderclouds as tall as 18 kilometers (10 miles) in altitude in order to measure gamma-ray glows and flashes produced by the electric fields of thunderclouds.  ALOFT is short for Airborne Lightning Observatory for Fly’s Eye GLM Simulator and Terrestrial gamma-ray flashes. The campaign included researchers and flight crews from the University of Bergen, NRL, NASA’s Armstrong Flight Research Center, NASA’s Marshall Space Flight Center, and NASA’s Goddard Space Flight Center.

  • NASA Armstrong’s ER-2 aircraft flies high to study lightning. Credit: NASA

    NASA’s ER-2 Aircraft Flies High to Investigate Lightning

    In July 2023, NASA’s ER-2 aircraft has been flying close to thunderclouds to investigate lightning and its connection to the vast energy fields in our atmosphere. As the highest-flying plane of NASA’s Airborne Science Program, the ER-2 is giving researchers a new angle on storm clouds.

  • NASA pilot Wayne Ringelberg, right, prepares to be dunked by Federal Aviation Administration Aviation Physiology and post-crash survival instructor Roger Storey, left, for helicopter egress training on April 12, 2023, at the FAA Civil Aerospace Medical Institute in Oklahoma. Credits: FAA Mike Monroney Aeronautical Center/Laura Shepherd-Madsen

    NASA Pilots Get Dunked

    What’s it like to escape from an aircraft underwater? NASA research pilots Wayne Ringelberg, and Scott Howe recently found out when they completed pilot dunker training at the FAA (Federal Aviation Administration) Mike Monroney Aeronautical Center Civil Aerospace Medical Institute in Oklahoma. This training certifies the pilots to fly helicopters over bodies of water for upcoming automated systems flight testing for NASA’s Advanced Air Mobility research with Sikorsky and DARPA (Defense Advanced Research Project Agency).

  • Scenes from CTD water collection party. Courtesy of Jessica Caggiano and Jacob Wenegrat.

    Elation Through Filtration: An Oceanographer’s Sensations at Sea

    Being a biological oceanographer on a physical oceanographic voyage has highlighted a key distinction between the two disciplines. Physical oceanographers rely on sensing – deploying instrumentation that measures properties of the water: temperature, velocity, oxygen, etc. Those data are sent back to laptops allowing for near instantaneous analysis. The day-to-day work of biological oceanography, on the other hand, may be a science best described by filtering – a task that is intertwined with most measurements in our field. We collect water and remove the particles or organisms we want to study. The finest filter might have holes that let only the tiniest particles through, while the largest filter could be something like a large net, where even fish can slip through its mesh.

  • In Dust and Clouds Over Africa, Scientists Find Clues to How Hurricanes Form

    When the dust that wafts off the Sahel and Sahara regions of Africa mixes with tropical clouds, it creates what’s known as a rainy “disturbance” in the eastern Atlantic. These disturbances are hurricanes in their youngest form, and as they travel across the ocean, they can either dissipate or grow into powerful storms.

    To study these infant storms, a group of NASA scientists in September 2022 spent a month flying off the northwestern coast of Africa aboard NASA’s DC-8 research plane.  Each day, the team took off from Cabo Verde, an island nation off the west coast of Africa, logging roughly 100 hours altogether. The mission, known as the Convective Processes Experiment – Cabo Verde (CPEX-CV) released its data publicly on April 1.

  • A look at NASA’s new mission to explore the Earth’s oceans

    ​Scientists at NASA are on a mission to study the surface of the Earth's oceans to observe how eddies, whirlpools and currents interact with the atmosphere and shape the Earth’s climate. NBC’s Jacob Soboroff reports for TODAY.

  • Kelly Luis, a NASA Postdoctoral Program Fellow at NASA’s Jet Propulsion Laboratory in Southern California, uses a handheld instrument called the Spectral Evolution to measure water color during the Sub-Mesoscale Ocean Dynamics Experiment (S-MODE) mission. Image Credit: NASA/Avery Snyder

    On the Edge: NASA’s Last S-MODE Mission Studies the Ocean’s Surface

    NASA has taken to the seas and skies to study the unique environment at the ocean’s surface, where marine ecosystems intersect with our planet's complex atmosphere. On April 7, 2023, scientists participating in the Sub-Mesoscale Ocean Dynamics Experiment (S-MODE) embarked on the RV Sally Ride from San Diego on the last of three field expeditions to understand the ocean’s role in the Earth’s changing climate. They will be at sea for about a month until returning to San Diego on May 4, and they will operate for most of that period in tandem with an accompanying airborne campaign.

  • Scientists on the RV Sally Ride are interviewed

    Dr. Brenna Biggs Presents “Wave” Hello to NASA S-MODE: A Study of Sub-Mesoscale Ocean Processes

    Dr. Brenna Biggs hosted a panel of S-MODE scientists at an Earth Day event at the Chabot Space and Science Center for K-12 students on April 22, 2023.

  • Florian Schwandner (left), director of the Earth Sciences Division at NASA’s Ames Research Center, describes to U.S. Rep. Anna Eshoo the use of autonomous uncrewed aircraft to carry cameras and sensors for monitoring of environmental events such as wildfires or volcanic activity. Credits: NASA/Dominic Hart

    NASA Leaders View Climate Science, Wildfire Innovations at NASA Ames

    NASA is working to understand climate change and build resilience to its risks, such as the increasing threat of wildfire, for the nation and the world. On April 13, the agency’s top leadership visited NASA’s Ames Research Center in California’s Silicon Valley to learn about the center’s climate science and innovations in aeronautics that will help people everywhere face these challenges.

  • The P-3 research plane leaving its hangar at NASA's Wallops Flight Facility in Virginia. Patrick Black/NASA

    Scientists are flying into snowstorms to explore winter weather mysteries

    High up in some ice-filled clouds, sitting inside an airplane loaded with science instruments, Christian Nairy looked at pictures flashing on his computer screen. This high-altitude slideshow is displaying real-time images of cloud particles being sampled by a device out on the plane's wing — and some of the ice crystals looked like perfect little snowflakes.

Pages