NDACC MLO FTIR

Solar viewing Fourier Transform Interferometer (FTIR). This is a ground based instrument stationed at the NOAA Mauna Loa Observatory (MLO). It operates daily in an autonomous mode taking middle infrared solar spectra of the terrestrial atmosphere. It began operation in 1995 and has run continuously since. The data are used for long term studies of many trace species in the atmosphere. Its operated as part of the Network for the Detection for Atmospheric Composition Change (NDACC www.ndacc.org). See https://www2.acom.ucar.edu/irwg for information on the network and https://www2.acom.ucar.edu/irwg for info on PI J. Hannigan. Data are publicly available at www.ndacc.org. Data products consist of retrievals from the remote sensing spectra of vertical profiles of CO, CH4, ClONO2, HCOOH, C2H6, HCN, HCl, HF, HNO3, H2O, HDO, OCS, N2O, O3, H2CO. Other species are available.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Carbon mOnoxide Measurement from Ames

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Harvard Tracer Suite

HTS is composed of two instruments based on absorption of near-infrared laser radiation in high finesse optical cavities. A Picarro G2401-m analyzer based on wavelength-scanned cavity ring-down spectroscopy (CRDS) measures CO2, CH4, and CO concentrations at 2-second intervals. A Los Gatos 913-0014 EP analyzer based on off-axis integrated cavity output spectroscopy (ICOS) measures N2O and CO concentrations at 1-second intervals. Extensive modifications have been applied to these commercial analyzers for flight and include vibration isolation, temperature control, additional flow control and pumping capacity for high-altitude sampling, sample drying, and in-flight calibrations using WMO-traceable compressed gas standards to verify stable and accurate performance throughout the full DC-8 flight envelope.

Measurements: 
Aircraft: 
Point(s) of Contact: 

Programmable Flask Package Whole Air Sampler

The PFP whole air sampler provides a means of automated or manual filling of glass flasks, twelve per PFP. The sampler is designed to remove excess water vapor from the sampled air and compress it without contamination into ~1-liter volumes. These flasks are analyzed at the NOAA’s Global Monitoring Division laboratory for trace gasses and at  the INSTAR’s Staple Isotope Lab laboratory for isotopes of methane. More than 60 trace gases found in the global atmosphere can be measured at mole fractions that range from parts-per-million (10-6), e.g., carbon dioxide, down to parts-per-quadrillion (10-15), e.g., HFC-365mfc.  The chemical species monitored include N2O, SF6, H2, CS2, OCS, CO2, CH4, CO, CFCs, HCFCs, HFCs, Solvents, Methyl Halides, Hydrocarbons and Perfluorocarbons.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Advanced Whole Air Sampler

32 samples/flight (ER-2); 50 samples/flight (WB57); 90 samples/flight (Global Hawk)

Updated control system with remote control capability

Fill times
–14 km 30 – 40 sec
–16 km 40 – 50 sec
–18 km 50 – 60 sec
–20 km 100 – 120 sec (estimated)

Analysis in UM lab: GC/MS; GC/FID; GC/ECD

Instrument Type: 
Point(s) of Contact: 

Quantum Cascade Laser System

The Harvard QCLS (DUAL and CO2) instrument package contains 2 separate optical assemblies and calibration systems, and a common data system and power supply. The two systems are mounted in a single standard HIAPER rack, and are described separately below:

The Harvard QCL DUAL instrument simultaneously measures CO, CH4, and N2O concentrations in situ using two thermoelectrically cooled pulsed-quantum cascade lasers (QCL) light sources, a multiple pass absorption cell, and two liquid nitrogen-cooled solid-state detectors. These components are mounted on a temperature-stabilized, vibrationally isolated optical bench with heated cover. The sample air is preconditioned using a Nafion drier (to remove water vapor), and is reduced in pressure to 60 mbar using a Teflon diaphragm pump. The trace gas mixing ratios of air flowing through the multiple pass absorption cell are determined by measuring absorption from their infrared transition lines at 4.59 microns for CO and 7.87 microns for CH4 and N2O using molecular line parameters from the HITRAN data base. In-flight calibrations are performed by replacing the air sample with reference gas every 10 minutes, with a low-span and a high-span gas every 20 minutes. A prototype of this instrument was flown on the NOAA P3 in the summer of 2004.

The Harvard QCL CO2 instrument measures CO2 concentrations in situ using a thermoelectrically cooled pulsed-quantum cascade laser (QCL) light source, gas cells, and liquid nitrogen cooled solid-state detectors. These components are stabilized along the detection axis, vibrationally isolated, and housed in a temperature-controlled pressure vessel. Sample air enters a rear-facing inlet, is preconditioned using a Nafion drier (to remove water vapor), then is reduced in pressure to 60 mbar using a Teflon diaphragm pump. A second water trap, using dry ice, reduces the sample air dewpoint to less than –70C prior to detection. The CO2 mixing ratio of air flowing through the sample gas cell is determined by measuring absorption from a single infrared transition line at 4.32 microns relative to a reference gas of known concentration. In-flight calibrations are performed by replacing the air sample with reference gas every 10 minutes, and with a low-span and a high-span gas every 20 minutes.

Instrument Type: 
Measurements: 
Aircraft: 
NCAR G-V, NOAA P-3, DC-8 - AFRC
Point(s) of Contact: 

UAS Chromatograph for Atmospheric Trace Species

The Unmanned Aircraft Systems (UAS) Chromatograph for Atmospheric Trace Species (UCATS) was designed and built for autonomous operation on remotely piloted aircraft, but has also been used on manned aircraft. It uses chromatography to separate atmospheric trace gases along narrow heated columns, followed by precise and accurate detection with electron capture detectors. There are currently three chromatography channels on UCATS, which measure nitrous oxide (N2O) and sulfur hexafluoride (SF6); CFC-11, CFC-12, CFC-113, and halon 1211; and chloroform (CHCl3) and carbon tetrachloride. On an earlier version of UCATS, with only two channels, we also measured methane, hydrogen, and carbon monoxide, along with N2O and SF6. In addition, there is a small ozone instrument and a tunable diode laser instrument for water vapor. Gas is pumped into the instruments from an inlet outside the aircraft, measured, and vented. UCATS has flown on the Altair UAS, the GV during HIPPO, the NASA Global Hawk UAS during the Global Hawk Pacific (GloPac) and ATTREX missions, where a record was set for the longest duration research flight (more than 28 hours), the DC-8 for ATom, and the ER-2 for DCOTSS. UCATS is relatively lightweight and compact, making it ideal for smaller platforms, but it is easily adaptable to a mid-size platform like the GV or Global Hawk. The data are used to measure sources and sinks of trace gases involved in climate and air quality, as well as transport through the atmosphere.

UCATS is three different instruments in one enclosure:

1. 3-channel (formerly 2-channel, up until 2020) gas chromatograph (GC)
2. Dual-beam ozone photometer (OZ)
3. Tunable diode laser (TDL) spectrometer for water vapor (WV)

Measurements: 
Aircraft: 
Altair, Global Hawk - AFRC, DC-8 - AFRC, Gulfstream V - NSF, WB-57 - JSC, ER-2 - AFRC
Point(s) of Contact: 

Fourier Transform Infrared Spectrometer

The absorption of infrared solar radiation along a slant path to the sun is recorded from 2 to 15 micrometers. Six spectral filters are used to cover the region from 2-15 microns. An interferogram is recorded in about 10 seconds. Interferograms are transformed to produce spectra. Column amounts are retrieved by fitting the observed spectra using the non-linear least squares fitting code SFIT2 that employs an Optimal Estimation retrieval algorithm.

The major chlorine reservoirs (HCl and ClONO2), the important nitrogen-containing gases in the stratosphere (N2O, NO, NO2, and HNO3), stratospheric and tropospheric tracers (HF, CH4, C2H6, H2O, CO2), a major source CFC (CF2Cl2) and ozone may be routinely retrieved.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Airborne Submillimeter Radiometer

The ASUR (Airborne SUbmillimeter Radiometer) is an airborne radiometer measuring the thermal emission of trace gases in the stratosphere (in an altitude range between 15 and 50 km). The instrument detects the radiation in a frequency range between 604.3 and 662.3 GHz. This corresponds to wavelengths of about 0.45-0.5 mm. In this frequency range a major part of the radiation is absorbed by atmospheric water vapor. As most of the water vapor is found in the troposphere (in the Arctic up to 8 km, in the tropics up to 16 km altitude) the instrument is operated on board of an aircraft flying at an altitude of 10-12 km, such that a major part of the water vapor absorption is avoided. Using appropriate inversion techniques vertical profiles from 15 to over 50 km altitude can be retrieved with a vertical resolution of typically 6 km and 12 km in the lower and upper stratosphere, respectively.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Uninhabited Aerial Vehicle Atmo Water Sensor Package

Measurements: 
Point(s) of Contact: 

Pages

Subscribe to RSS - N2O