Synonyms: 
SOLVE 1
SOLVE1
SOLVE I
Associated content: 

Diode Laser Hygrometer

The DLH has been successfully flown during many previous field campaigns on several aircraft, most recently ACTIVATE (Falcon); FIREX-AQ, ATom, KORUS-AQ, and SEAC4RS (DC-8); POSIDON (WB-57); CARAFE (Sherpa); CAMP2Ex and DISCOVER-AQ (P-3); and ATTREX (Global Hawk). This sensor measures water vapor (H2O(v)) via absorption by one of three strong, isolated spectral lines near 1.4 μm and is comprised of a compact laser transceiver and a sheet of high grade retroflecting road sign material to form the optical path. Optical sampling geometry is aircraft-dependent, as each DLH instrument is custom-built to conform to aircraft geometric constraints. Using differential absorption detection techniques, H2O(v) is sensed along the external path negating any potential wall or inlet effects inherent in extractive sampling techniques. A laser power normalization scheme enables the sensor to accurately measure water vapor even when flying through clouds. An algorithm calculates H2O(v) concentration based on the differential absorption signal magnitude, ambient pressure, and temperature, and spectroscopic parameters found in the literature and/or measured in the laboratory. Preliminary water vapor mixing ratio and derived relative humidities are provided in real-time to investigators.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Differential Absorption Carbon monOxide Measurement

The in‐situ diode laser spectrometer system, referred to by its historical name DACOM, includes three tunable diode lasers providing 4.7, 4.5, and 3.3 μm radiation for accessing CO, N2O, and CH4 absorption lines, respectively. The three laser beams are combined by the use of dichroic filters and are then directed through a small volume (0.3 liter) Herriott cell enclosing a 36 meter optical path. As the three coincident laser beams exit the absorption cell, they are spectrally isolated using dichroic filters and are then directed to individual detectors, one for each laser wavelength. Wavelength reference cells containing CO, CH4, and N2O are used to wavelength lock the operation of the three lasers to the appropriate absorption lines. Ambient air is continuously drawn through a Rosemount inlet probe and a permeable membrane dryer which removes water vapor before entering the Herriott cell and subsequently being exhausted via a vacuum pump to the aircraft cabin. To minimize potential spectral overlap from other atmospheric species, the Herriott cell is maintained at a reduced pressure of ~90 Torr. At 5 SLPM mass flow rate, the absorption cell volume is exchanged nominally twice per second. Frequent but short calibrations with well documented and stable reference gases are critical to achieving both high precision and accuracy. Calibration for all species is accomplished by periodically (~4 minutes) flowing calibration gas through this instrument. Measurement accuracy is closely tied to the accuracy of the reference gases obtained from NOAA/ESRL, Boulder, CO. Both CO and CH4 mixing ratios are provided in real-time to investigators aboard the DC‐8.

Measurements: 
Point(s) of Contact: 

Closed-path Laser Hygrometer

The University of Colorado closed-path tunable diode laser hygrometer (CLH) is based on the water vapor hygrometers designed by R. D. May (Maycomm, Inc.). CLH is coupled to a heated, forward-facing inlet that enhances particulate water by anisokinetic sampling. Ice water content (IWC) is derived from the measurement of enhanced total water, with knowledge of the instrument sampling characteristics, particle size distributions and ambient water vapor.

In contrast to the open-path systems of similar heritage, the CLH, which was designed for operation in the troposphere on commercial aircraft, has a single-pass absorption cell (27.62 cm long). The light source is a room-temperature solid-state laser that puts out 3-5 mW of radiation at 1.37 mm (7306.752 cm-1).

Instrument Type: 
Measurements: 
Aircraft: 
Gulfstream V - NSF, WB-57 - JSC, DC-8- AFRC
Point(s) of Contact: 

Tropospheric Ozone and Tracers from Commercial Aircraft Platforms

Ozone is measured in a dual-beam ultraviolet (254 nm) absorption analyzer. Ambient air flows through one absorption cell while air scrubbed of ozone flows through an adjacent one. This allows continuous measurement of both background and absorption signals. Flows are switched between cells by a pair of solenoid valves, which permits monitoring of optical changes. Water vapor is detected with a tunable diode laser spectrometer designed and built by Randy May. This sensor employs a room-temperature near-infrared laser (single mode at about 1.37 microns) and second harmonic detection, rather than direct absorption. Unlike the JPL water instrument, this sensor has an internal absorption path, optimized for the mid-troposphere. Carbon dioxide is measured by its absorption in the infrared (4.25 microns) using a LiCor NDIR instrument. This is also a dual-cell device, in which the absorption caused by the ambient air sample is compared to that from a reference gas of known composition. Halocarbons are monitored with a custom-built gas chromatograph, using short, packed columns and small ovens, and HP micro-electron capture detectors. Ambient sample and standard will be run simultaneously on paired columns to reduce errors associated with drift in ECD response.

Measurements: 
Point(s) of Contact: 

Focused Cavity Aerosol Spectrometer

The FCAS II sizes particles in the approximate diameter range from 0.07 mm to 1 mm. Particles are sampled from the free stream with a near isokinetic sampler and are transported to the instrument. They are then passed through a laser beam and the light scattered by individual particles is measured. Particle size is related to the scattered light. The data reduction for the FCAS II takes into account the water which is evaporated from the particle in sampling and the effects of anisokinetic sampling (Jonsson et al., 1995).

The FCAS II and its predecessors have provided accurate aerosol size distribution measurements throughout the evolution of the volcanic cloud produced by the eruption of Mt. Pinatubo. (Wilson et al., 1993). Near co-incidences between FCAS II and SAGE II measurements show good agreement between optical extinctions calculated from FCAS size distributions and extinctions measured by SAGE II.

Accuracy: The instrument has been calibrated with monodisperse aerosol carrying a single charge. The FCAS III and the electrometer agree to within 10%. Sampling errors may increase the uncertainty but a variety of comparisons suggests that total uncertainties in aerosol surface are near 30% (Jonsson, et al., 1995).

Precision: The precision equals 1/ÖN where N is the number of particles counted. In many instances the precision on concentration measurements may reach 7% for 0.1 Hz data. If better precision is desired, it is necessary only to accumulate over longer time intervals.

Response Time: Data are processed at 0.1 Hz. However, the response time depends upon the precision required to detect the change in question. Small changes may require longer times to detect. Plume measurements may be processed with 1 s resolution.

Weight: Approximately 50 lbs.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Composition and Photo-Dissociative Flux Measurement

The instrument used for the CPFM is a spectroradiometer based on a concave, holographic diffraction grating and a 1024-element diode array detector. It measures the intensities of the two linear polarization components of radiation propagating upward at the aircraft location from a range of elevation angles near the horizon. In addition, a measurement of the intensity of the direct solar beam is made by viewing a horizontal diffusing surface mounted under a quartz dome on board the aircraft. These measurements are used to verify atmospheric light-scattering calculations, which are essential for the accurate modeling of the chemistry of the stratosphere where POLARIS makes its measurements.

Measurements: 
Point(s) of Contact: 

Condensation Nuclei Counter

The CNC counts particles in the approximate diameter range from 0.006 m to 2 m. The instrument operates by exposing the articles to saturated Flourinert vapor at 28 C and then cooling the sample in a condenser at 5 C. The supersaturation of the vapor increases as it is cooled and the vapor condenses on the particles causing them to grow to sizes which are easily detected. The resulting droplets are passed through a laser beam and the scattered light is detected. Individual particles are counted and are referred to as condensation nuclei (CN). Two CN Counters are provided in the instrument. One counts the particles after sampling from the atmosphere and the second counts particles that have survived heating to 192C. Lab experiments show that pure sulfuric acid particles smaller than 0.05 mm are volatilized in the heater. The heated channel detects when small particles are volatile and permits speculation about the composition. The CNC II contains an impactor collector which permits the collection of particles on electron microscope grids for later analysis. The collector consists of a two stages. In the first stage the pressure of the sample is reduced by a factor of two without loosing particles by impaction on walls. The second stage consists of a thin plate impactor which collect efficiently even at small Reynolds numbers. The system collects particles as small as 0.02 m at WB-57 cruise altitudes. As many as 25 samples can be collected in a flight.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Chemical Ionization Mass Spectrometer

The single mass analyzer CIMS (S-CIMS) was developed for use on NASA’s ER-2 aircraft. Its first measurements were made in 2000 (SOLVE, see photo). Subsequently, it has flown on the NASA DC-8 aircraft for INTEX-NA, DICE, TC4, ARCTAS, ATom, KORUS, FIREX, as well as on the NCAR C-130 during MILAGRO/INTEX-B. HNO3 is measured by selective ion chemical ionization via the fluoride transfer reaction: CF3O- + HNO3 → HF • NO3- + CF2O In addition to its fast reaction rate with HNO3, CF3O- can be used to measure additional acids and nitrates as well as SO2 [Amelynck et al., 2000; Crounse et al., 2006; Huey et al., 1996]. We have further identified CF3O- chemistry as useful for the measurement of less acidic species via clustering reactions [Crounse et al., 2006; Paulot et al., 2009a; Paulot et al., 2009b; St. Clair et al., 2010]: CF3O- + HX → CF3O- • HX where, e.g., HX = HCN, H2O2, CH3OOH, CH3C(O)OOH (PAA) The mass analyzer of the S-CIMS instrument was first upgraded from a quadrupole to a unit-mass resolution time-of-flight (ToF) analyzer. In 2023, the mass filter was again upgraded to an 1m flight path (~5000 deltaM/M).  The ToF admits the sample ion beam to the ion extractor, where a pulse of high voltage orthogonally deflects and accelerates the ions into the reflectron, which in turn redirects the ions toward the multichannel plate detector. Ions in the ToF follow a V-shaped from the extractor to detector, separating by mass as the smaller ions are accelerated to greater velocities by the high voltage pulse. The detector collects the ions as a function of time following each extractor pulse. The rapid-scan collection of the ToF guarantees a high temporal resolution (1 Hz or faster) and simultaneous data products from the S-CIMS instrument for all mass channels [Drewnick et al., 2005]. We have flown a tandem CIMS (TCIMS) instrument in addition to the SCIMS since INTEX-B (2006). The T-CIMS provides parent-daughter mass analysis, enabling measurement of compounds precluded from quantification by the S-CIMS due to mass interferences (e.g. MHP) or the presence of isobaric compounds (e.g. isoprene oxidation products) [Paulot et al., 2009b; St. Clair et al., 2010]. Calibrations of both CIMS instruments are performed in flight using isotopically-labeled reagents evolved from a gas cylinders or from a thermally-stabilized permeation tube oven [Washenfelder et al., 2003]. By using an isotopically labeled standard, the product ion signals are distinct from the natural analyte and calibration can be performed at any time without adversely affecting the ambient measurement.

Instrument Type: 
Point(s) of Contact: 

Argus Tunable Diode Laser Instrument

Argus is a two channel, tunable diode laser instrument set up for the simultaneous, in situ measurement of CO (carbon monoxide), N2O (nitrous oxide) and CH4 (methane) in the troposphere and lower stratosphere. The instrument measures 40 x 30 x 30 cm and weighs 21 kg. An auxiliary, in-flight calibration system has dimensions 42 x 26 x 34 cm and weighs 17 kg.

The instrument is an absorption spectrometer operating in rapid scan, secondharmonic mode using frequency-modulated tunable lead-salt diode lasers emitting in the mid-infrared. Spectra are co-added for two seconds and are stored on a solid state disk for later analysis. The diode laser infrared beam is shaped by two anti-refection coated lenses into an f/40 beam focused at the entrance aperture of a multi-pass Herriott cell. The Herriott cell is common to both optical channels and is a modified astigmatic cell (New Focus Inc., Santa Clara, California).

The aspherical mirrors are coated with protected silver for optimal infrared reflectivity. The cell is set up for a 182-pass state for a total path of 36m. The pass number can be confirmed by visual spot pattern verification on the mirrors observed through the glass cell body when the cell is illuminated with a visible laser beam. However, instrument calibration is always carried out using calibrated gas standards with the Argus instrument operating at its infrared design wavelengths, 3.3 and 4.7 micrometers respectively for CH4 and CO detection. The electronic processing of the second harmonic spectra is done by standard phase sensitive amplifier techniques with demodulation occurring at twice the laser modulation frequency of 40 kHz. To optimize the secondharmonic signal amplitude in a changing ambient pressure environment the laser modulation amplitude is updated every 2 seconds to its optimal theoretical value based upon the measured pressure in the Herriott cell.

Measurements: 
Aircraft: 
Point(s) of Contact: 

Airborne Chromatograph For Atmospheric Trace Species

ACATS-IV is a 4-channel gas chromatograph with electron capture detection (ECD) that measures a variety of halocarbons and other long-lived trace gases in the stratosphere. The instrument is currently configured to measure CFC-11 (CCl3F), CFC-12 (CCl2F2), CFC-113 (CCl2FCClF2), methyl chloroform (CH3CCl3), carbon tetrachloride (CCl4), halon-1211 (CBrClF2), chloroform (CHCl3), methane (CH4), and hydrogen (H2) every 125 s, and nitrous oxide (N2O) and sulfur hexafluoride (SF6) every 250 s. Each channel is comprised of a sample loop (2-10 cm3 volume), gas sampling valve (GSV), chromatographic column pair, ECD, electrometer, and several flow, temperature, and pressure controllers. In-flight calibration is carried out every 625 s (1250 s for N2O and SF6) by injecting a dried, whole air standard containing approximately 80% of tropospheric mixing ratios.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Pages

Subscribe to RSS - SOLVE