Langley Cloud Probes

The LARGE group operates a suite of probes to measure in-situ cloud microphysical properties. Probes are typically mounted at an under-wing or wing-tip position in unperturbed air. The package of probes can be tailored to specific science objectives or mounting-point availability considerations. The following probes are available:

CAPS (Cloud, Aerosol, Precipitation Spectrometer), Droplet Measurement Technologies.  The CAPS contains individual sensors.  The CAS (Cloud Aerosol Spectrometer) measures size distributions of clouds and aerosols between 0.5-50µm diameter using forward-scattered light intensity from a 658nm laser. Response is calibrated with glass beads. The CIP (Cloud Imaging Spectrometer) measures size distributions of droplet and precipitation particles between 15-150µm diameter recording shadows on an optical array. The CIP is calibrated using a spinning disk. A hotwire is also used to measure total liquid-water-content. Each probe utilizes a local measurment of airspeed, temperature, and static pressure for quantification and has de-icing capability.
CDP (Cloud Droplet Probe), Droplet Measurement Technologies. The CDP measures droplet and aerosol size distributions between 2-50µm diameter using forward-scattering from a 658nm laser.  The probe is calibrated with glass beads and has de-icing capability.
WCM-2000 (Science Engineering Associates).  Measures Liquid Water Content (LWC) using two independent hotwire elements, Total Water Content (TWC) using a scoop sensor, and an element oriented parallel with the airstream as a control to establish the background response at that specific airspeed, temperature, and pressure.  Ice Water Content (IWC) is calculated as the difference between TWC and LWC. Each element operates by maintaining a constant temperature, and the current necessary to maintain that temperature is related directly with water content.  
 

Instrument Type: 
Aircraft: 
DC-8 - AFRC, P-3 Orion - WFF, C-130 - WFF, HU-25 Falcon - LaRC
Point(s) of Contact: 

Cloud, Aerosol, and Refractive Index Experiment

CARE consists of three instruments: an Optical Particle AnaLyzer (OPAL), a second generation Cloud, Aerosol and Precipitation Spectrometer (CAPS), and a Precipitation Imaging Probe (PIP). CARE detects the size distributions of aerosol and cloud particles in the size range between 0.5 µm and 6.2 mm, provides information about particle shape and cloud phase, and allows the retrieval of refractive index of single particles in the size range between ~0.5 and 2 µm.

Aircraft: 
Point(s) of Contact: 

Cloud Aerosol and Precipitation Spectrometer - U Vienna

Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research

4STAR (Spectrometers for Sky-Scanning Sun-Tracking Atmospheric Research; Dunagan et al., 2013) is an airborne sun-sky spectrophotometer measuring direct solar beam transmittance (i.e., 4STAR determines direct solar beam transmission by detecting direct solar irradiance) and narrow field-of-view sky radiance to retrieve and remotely sense column-integrated and, in some cases, vertically resolved information on aerosols, clouds, and trace gases. The 4STAR team is a world leader in airborne sun-sky photometry, building on 4STAR’s predecessor instrument, AATS-14 (the NASA Ames Airborne Tracking Sun photometers; Matsumoto et al., 1987; Russell et al. 1999, and cited in more than 100 publication) and greatly expanding aerosol observations from the ground-based AERONET network of sun-sky photometers (Holben et al., 1998) and the Pandora network of ground-based direct-sun and sky spectrometer (e.g, Herman et al., 2009).

4STAR is used to quantify the attenuated solar light (from 350 to 1650 nm) and retrieve properties of various atmospheric constituents: spectral Aerosol Optical Depth (AOD) from ultraviolet to the shortwave infrared (e.g., LeBlanc et al., 2020, Shinozuka et al., 2013); aerosol intensive properties - Single Scattering Albedo (SSA; e.g., Pistone et al., 2019), asymmetry parameter, scattering phase function, absorption angstrom exponent, size distribution, and index of refraction; various column trace gas components (NO2, Ozone, Water Vapor; e.g., Segal-Rosenheimer et al., 2014, with potential for SO2 and CH2O); and cloud optical depth, effective radius and thermodynamic phase (e.g., LeBlanc et al., 2015).

Some examples of the science questions that 4STAR have pursued in the past and will continue to address:

  • What is the Direct Aerosol Radiative Effect on climate and its uncertainty? (1)
  • How much light is absorbed by aerosol emitted through biomass burning? (1)
  • How does heating of the atmosphere by absorbing aerosol impact large scale climate and weather patterns? (1)
  • How does the presence of aerosol impact Earth’s radiative transfer, with co-located high concentration of trace gas? (2, 4)
  • What is the impact of air quality from long-range transport of both aerosol particulates and column NO2 and Ozone, and their evolution? (2, 5)
  • What are the governing properties and spatial patterns of local and transported aerosol? (1)
  • How are cloud properties impacted near the sea-ice edge? (3)
  • In heterogeneous environments where clouds and aerosols are present, how much solar radiation is impacted by 3D radiative transfer? And how does that impact the aerosol properties? (4)

(1) ORACLES: Zuidema et al., doi:10.1175/BAMS-D-15-00082.1., 2016; LeBlanc et al., doi:10.5194/acp-20-1565-2020, 2020; Pistone et al., https://doi.org/10.5194/acp-2019-142, 2019;Cochrane et al., https://doi.org/10.5194/amt-12-6505-2019, 2019; Shinozuka et al., https://doi.org/10.5194/acp-2019-1007, In review; Shinozuka et al., https://www.atmos-chem-phys-discuss.net/acp-2019-678/, In review
(2) KORUS-AQ: Herman et al., doi:10.5194/amt-11-4583-2018, 2018
(3) ARISE: Smith et al.,
https://doi.org/10.1175/BAMS-D-14-00277.1, 2017; Segal-Rosenheimer et al., doi:10.1029/2018JD028349, 2018
(4) SEAC4RS: Song et al., doi: 10.5194/acp-16-13791-2016, 2016; Toon et al., https://doi.org/10.1002/2015JD024297, 2016
(5) TCAP: Shinozuka et al., doi:10.1002/2013JD020596, 2013; Segal-Rosenheimer et al., doi:10.1002/2013JD020884, 2014

Instrument Type: 
Point(s) of Contact: 

Rosemount Icing Detector

The RICE is a magnetostrictive oscillation probe with a sensing cylinder 6.35 mm in diameter and 2.54 cm in length. Ice buildup on the sensing cylinder causes the frequency of oscillation to change, which can be related to the rate of ice accretion and hence the cloud liquid water content (LWC). When approximately 0.5 mm of ice has accumulated, a heater melts the ice, which is shed into the air stream. The heater cycle is approximately 5 s, and the cylinder normally requires an additional 5–10 s to cool down to a temperature where it can begin accreting ice again.

Point(s) of Contact: 

Cloud Aerosol and Precipitation Spectrometer

Measures concentration and records images of cloud particles from approximately 50-1600 microns in diameter with a resolution of 25 microns per pixel. Measures cloud droplet and aerosol concentrations within the size range of 0.5-50 microns.

The three DMT instruments included in the CAPS are the Cloud Imaging Probe (CIP), the Cloud and Aerosol Spectrometer (CAS), and the Hotwire Liquid Water Content Sensor (Hotwire LWC).

The CIP, which measures larger particles, operates as follows. Shadow images of particles passing through a collimated laser beam are projected onto a linear array of 64 photodetectors. The presence of a particle is registered by a change in the light level on each diode. The registered changes in the photodetectors are stored at a rate consistent with probe velocity and the instrument’s size resolution. Particle images are reconstructed from individual “slices,” where a slice is the state of the 64-element linear array at a given moment in time. A slice must be stored each time interval that the particle advances through the beam a distance equal to the resolution of the probe. Optional grayscale imaging gives three levels of shadow recording on each photodetector, allowing more detailed information on the particles.

The CAS, which measures smaller particles, relies on light-scattering rather than imaging techniques. Particles scatter light from an incident laser, and collecting optics guide the light scattered in the 4° to 12° range into a forward-sizing photodetector. This light is measured and used to infer particle size. Backscatter optics also measure light in the 168° to 176° range, which allows determination of the real component of a particle’s refractive index for spherical particles.

The Hotwire LWC instrument estimates liquid water content using a heated sensing coil. The system maintains the coil at a constant temperature, usually 125 °C, and measures the power necessary to maintain this temperature. More power is needed to maintain the temperature as droplets evaporate on the coil surface and cool the surface and surrounding air. Hence, this power reading can be used to estimate LWC. Both the LWC design and the optional PADS software contain features to ensure the LWC reading is not affected by conductive heat loss.

Point(s) of Contact: 

Nevzorov Liquid Water Content (LWC) and Total Water Content (TWC) Probe

The Nevzorov liquid water content (LWC) and total water content (TWC) probe is a constant-temperature, hot-wire probe designed for aircraft measurements of the ice and liquid water content of clouds. The probe consists of two separate sensors for measurements of cloud liquid and total (ice plus liquid) water content. Each sensor consists of a collector and a reference winding. The reference sensors are shielded from impact with cloud particles, specifically to provide an automatic compensation for convective heat losses.

The sensitivity of the probe is estimated to be approximately 0.003– 0.005 g m23. The accuracy of LWC measurements in nonprecipitating liquid clouds is estimated as 10%–15%. Tests at the NRC high-speed icing tunnel have provided verification of the TWC measurement for small frozen droplets to an accuracy of approximately 10%–20%, but verification in snow and natural ice crystals has not yet been possible due to the absence of any accurate standards. The TWC measurement offers not only the possibility of direct measurements of ice content but also improved liquid water contents in drizzle situations. Airborne measurements have provided data on the baseline drift and sensitivity of the probe and have provided comparisons to other conventional instruments. Several cases have been documented that exhibit the unique capabilities of the instrument to separate the ice and liquid components of supercooled clouds.

Point(s) of Contact: 

Cloud Spectrometer and Impactor

The Cloud Spectrometer and Impactor (CSI) combines the counterflow virtual impactor with a new lightweight cloud droplet probe to allow for detailed studies of total condensed water (TCW), liquid and ice, in clouds. The CSI can measure TCW from ~ 1 mg/m3 to several g/m3 depending on the configuration; in addition particle sizes from 2 to 50 μm are resolved with the droplet probe. The instrumentation can be mounted externally on most aircraft.

Point(s) of Contact: 

Counterflow Virtual Impactor

The NCAR counterflow virtual impactor (CVI) (Noone et al., 1988; Twohy et al., 1997) is an airborne instrument that can be used for studies of aerosol/cloud interactions, cloud physics, and climate. At the CVI inlet tip, cloud droplets or ice crystals larger than about 8 µm aerodynamic diameter are separated from the interstitial aerosol and impacted into dry nitrogen gas. This separation is possible via a counterflow stream of nitrogen out the CVI tip, which assures that only larger particles (cloud droplets or ice crystals) are sampled. Because droplets or crystals in a sampling volume of about 200 l/min are impacted into a sample stream of approximately 10 l/min, concentrations within the CVI are significantly enhanced. The water vapor and non-volatile residual nuclei remaining after droplet evaporation are sampled downstream of the inlet with selected instruments. These may include a Lyman-alpha or similar hygrometer, a condensation nucleus counter, an optical particle counter, filters for chemical analyses, or user instruments.

Point(s) of Contact: 

Cloud Imaging Probe

CIP obtains cloud particle images using a 64-element photodiode array probe to generate 2-Dimensional images of particles from 25-1550 μm, as well as sizing in 1-Dimensional histogram form, and includes housekeeping data.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Pages

Subscribe to RSS - Cloud Liquid Water Content