MOPITT Airborne Test Radiometer

The MOPITT Airborne Test Radiometer (MATR) is a gas correlation filter radiometer that was developed to support and validate the MOPITT satellite program. It is a scaled-down version of the MOPITT instrument that comprises two thermal channels near 4.6 µm for measuring CO and one solar channel near 2.33 µm (or 2.27 µm) for measuring CO (or CH4). Inasmuch as its spatial resolution (1.2 km x 1.2 km) is much higher than that of the MOPITT radiometer (22 km x 22 km), MATR measurements provide an opportunity to look at the horizontal distribution of CO in more detail, which is especially useful for investigating localized pollution sources.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 
John Gille (Prev PI)

HIAPER Airborne Radiation Package

The HIAPER Airborne Radiation Package (HARP) instrumentation is a comprehensive atmospheric radiation suite to measure spectrally resolved actinic flux and horizontally stabilized irradiance. HARP was developed in a collaborative effort between NCAR, the University of Colorado, the Leibniz-Institute for Tropospheric Research, Metcon, Inc and Enviscope GmbH. The package is part of the HIAPER Aircraft Instrumentation Solicitation (HAIS), funded by NSF.

Instrument Type: 
Measurements: 
Aircraft: 
Gulfstream V - NSF, C-130 - NSF, ER-2 - AFRC
Point(s) of Contact: 

Hurricane Imaging Radiometer

HIRAD is a multi-frequency, hurricane imaging, interferometric single-pol passive C-band radiometer, operating from 4 GHz to 7 GHz, with both cross-track and along-track resolution that measures strong ocean surface winds through heavy rain from an aircraft or space-based platform. A one-dimensional thinned synthetic aperture array antenna is used to obtain wide-swath measurements with multiple simultaneous beams in a push-broom configuration. HIRAD features software beam forming with no moving parts, internal hot, cold, and noise diode based calibration, and continuous, gap-free imaging. Its swath width is approximately 60 degrees in either direction. There are two products: rain rate and wind speed.

The basis of the HIRAD design is the Stepped Frequency Microwave Radiometer (SFMR) that has successfully measured surface wind speed and rain rate in hurricanes from the NOAA Hurricane Research Division’s (HRD) P-3 aircraft. Unlike the SFMR that views only at nadir, the HIRAD provides wide-swath measurements between ± 40 degrees in incidence angle with a spot-beam spatial resolution of approximately 1-3 km. HIRAD would be able to provide high resolution hurricane imaging when used on an operational hurricane surveillance aircraft such as the NOAA HRD’s Gulfstream-IV.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Sandia National Laboratory 2-channel Radiometer

The Sandia National Laboratory 2-channel radiometer uses two narrow-band (10 nm) filters in the red and near-IR at a sampling rate of many thousands per second. It measures the total radiative output of the SRC during entry in the 380-600 nm band and the 600-900 nm band and detect rapid fluctuations of light output from spacecraft rotation, instabilities in the shock layer, and ablation.

This instrument consists of two photometers, each equipped with a filter of choice: here a low-pass and high-pass cut-off filter. Each photometer measures the sky over a large ~15 degree field of view, at about 5 - 35 degree elevation.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

X-Band Lightweight Rainfall Radiometer

The X-band LRR, which is suitable for aircraft or space-based platforms, enables markedly improved measurement of precipitation drop size and distribution (at 10.7 GHz), as well as rain rate and surface wind speeds, when used in conjunction with other instruments, such as the PR-2. With a receiver less than 1/8th the size and using 50% less power than predecessors, the LRR could lead to a space-borne 25 channel synthetic aperture radiometer that would not be strictly limited by size and power requirements.

The core technology of the LRR – a synthetically thinned aperture radiometer (STAR) – demonstrated the feasibility of a one-dimensional geometric interferometer (no moving parts) for future NASA X-band missions. The lack of a mechanical scanning apparatus found on traditional radiometers makes the LRR payload smaller, lighter, and cheaper to launch while also reducing the complexity and risk of the instrument. The team also conducted an antenna design study that validated the STAR technology in the critical Ku- and Ka-bands.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

J(NO2) Radiometer

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Airborne Submillimeter Radiometer

The ASUR (Airborne SUbmillimeter Radiometer) is an airborne radiometer measuring the thermal emission of trace gases in the stratosphere (in an altitude range between 15 and 50 km). The instrument detects the radiation in a frequency range between 604.3 and 662.3 GHz. This corresponds to wavelengths of about 0.45-0.5 mm. In this frequency range a major part of the radiation is absorbed by atmospheric water vapor. As most of the water vapor is found in the troposphere (in the Arctic up to 8 km, in the tropics up to 16 km altitude) the instrument is operated on board of an aircraft flying at an altitude of 10-12 km, such that a major part of the water vapor absorption is avoided. Using appropriate inversion techniques vertical profiles from 15 to over 50 km altitude can be retrieved with a vertical resolution of typically 6 km and 12 km in the lower and upper stratosphere, respectively.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Solar Spectral Flux Radiometer

In early 2000, the Ames Atmospheric Radiation Group completed the design and development of an all new Solar Spectral Flux Radiometer (SSFR). The SSFR is used to measure solar spectral irradiance at moderate resolution to determine the radiative effect of clouds, aerosols, and gases on climate, and also to infer the physical properties of aerosols and clouds. Additionally, the SSFR was used to acquire water vapor spectra using the Ames 25-meter base-path multiple-reflection absorption cell in a laboratory experiment. The Solar Spectral Flux Radiometer is a moderate resolution flux (irradiance) spectrometer with 8-12 nm spectral resolution, simultaneous zenith and nadir viewing. It has a radiometric accuracy of 3% and a precision of 0.5%. The instrument is calibrated before and after every experiment, using a NIST-traceable lamp. During field experiments, the stability of the calibration is monitored before and after each flight using portable field calibrators. Each SSFR consists of 2 light collectors, which are either fix-mounted to the aircraft fuselage, or on a stabilizing platform which counteracts the movements of the aircraft. Through fiber optic cables, the light collectors are connected to 2 identical pairs of spectrometers, which cover the wavelength range from (a) 350 nm-1000 nm (Zeiss grating spectrometer with Silicon linear diode array) and (b) 950 nm - 2150 nm (Zeiss grating spectrometer with InGaAs linear diode array). Each spectrometer pair covers about 95% of the incoming solar incident irradiance spectrum.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Passive Active L- and S-band Sensor

PALS is a combined polarimetric radiometer and NASA licensed radar sharing a rotating planar array antenna. The PALS instrument includes a combined L-band radiometer and scatterometer , operating at 1.413 GHz and 1.26 GHz respectively. It was designed and built to investigate the benefits of combining passive and active microwave sensors for Ocean salinity and Soil moisture remote sensing. It is the prototype for the Aquarius and SMAP missions and its flexible design is compatible with many aircraft.

The PALS radar and radiometer time share a dual pole, dual frequency planner array antenna. The antenna configuration can be fixed or rotating. It provides scalable resolution, between 3,000 and 20,000 feet AGL. It is an Aquarius and SMAP test bed.

PALS has flown on the NCAR C-130, NASA’s P-3 and Twin Otter International’s, Twin Otter. It is a very mature instrument, and has flown more than 800 hours, in support of NASA campaigns.

Instrument Type: 
Point(s) of Contact: 

Radiometric Measurement System

Optics: We employed very simple optical arrangement for the radiometer. The diffuser-light trap arrangement provides a hemispherical field of view with incident radiation being collimated by the high reflectance walls of the exponential-logarithmic cavity. Enough collimation of the radiation is achieved with this design that narrow spectral bandpass interference filters can be used to select desired wavelength regions.

Electronics: The instrument electronics includes five major functional blocks. They are the detectors signal conditioning block, the data processing block, the system controller block, the shadow ring drive and control block, and the data storage block.

The signal detectors are silicon photodiodes operating in the photovoltaic mode and covering the spectral range from about 0.3 to 1.1µm. Their signals are converted into electrical voltages by low noise FET input operational amplifiers. Programmable gain amplifiers allow adjustments for dynamic range, and filter circuits condition the signals for analog to digital processing. Data processing units consist of an analog multiplexer circuit, a sample-and-hold circuit, and an analog to digital converter providing a 12-bit resolution output. The shadow ring is driven by a DC motor rotating at a constant speed. A motor controller is used to maintain motor speed. The system controller provides the timing necessary to perform all the system's tasks. It sets the shadow ring in motion and steps through the detector's outputs, maintaining the proper dynamic range for the analog to digital converter by selecting the proper amplifier gain. It also controls the analog to digital conversion and selectively stores data.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Pages

Subscribe to RSS - Radiometer