Synonyms: 
Methane
Column CH4

Harvard University Picarro Cavity Ring Down Spectrometer

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Advanced Whole Air Sampler

32 samples/flight (ER-2); 50 samples/flight (WB57); 90 samples/flight (Global Hawk)

Updated control system with remote control capability

Fill times
–14 km 30 – 40 sec
–16 km 40 – 50 sec
–18 km 50 – 60 sec
–20 km 100 – 120 sec (estimated)

Analysis in UM lab: GC/MS; GC/FID; GC/ECD

Instrument Type: 
Point(s) of Contact: 

Picarro G1301-c Methane/Carbon Dioxide Analyzer

The Picarro CO2/CH4 Flight Analyzer is a real time, trace gas monitor capable of measuring these gases with parts-per-billion (ppbv) sensitivity onboard aircraft with varying cabin pressure and environmental conditions. The analyzer is based on Wavelength-Scanned Cavity Ring Down Spectroscopy (WS-CRDS), a time-based measurement utilizing a near-infrared laser to measure a spectral signature of the molecule. Gas is circulated in an optical measurement cavity with an effective path length of up to 20 kilometers. A patented, high-precision wavelength monitor makes certain that only the spectral feature of interest is being monitored, greatly reducing the analyzer’s sensitivity to interfering gas species, and enabling ultra-trace gas concentration measurements even if there are other gases present. As a result, the analyzer maintains high linearity, precision, and accuracy over changing environmental conditions with minimal calibration required.

Instrument Type: 
Measurements: 
Aircraft: 
Gulfstream V - NSF
Point(s) of Contact: 

Quantum Cascade Laser System

The Harvard QCLS (DUAL and CO2) instrument package contains 2 separate optical assemblies and calibration systems, and a common data system and power supply. The two systems are mounted in a single standard HIAPER rack, and are described separately below:

The Harvard QCL DUAL instrument simultaneously measures CO, CH4, and N2O concentrations in situ using two thermoelectrically cooled pulsed-quantum cascade lasers (QCL) light sources, a multiple pass absorption cell, and two liquid nitrogen-cooled solid-state detectors. These components are mounted on a temperature-stabilized, vibrationally isolated optical bench with heated cover. The sample air is preconditioned using a Nafion drier (to remove water vapor), and is reduced in pressure to 60 mbar using a Teflon diaphragm pump. The trace gas mixing ratios of air flowing through the multiple pass absorption cell are determined by measuring absorption from their infrared transition lines at 4.59 microns for CO and 7.87 microns for CH4 and N2O using molecular line parameters from the HITRAN data base. In-flight calibrations are performed by replacing the air sample with reference gas every 10 minutes, with a low-span and a high-span gas every 20 minutes. A prototype of this instrument was flown on the NOAA P3 in the summer of 2004.

The Harvard QCL CO2 instrument measures CO2 concentrations in situ using a thermoelectrically cooled pulsed-quantum cascade laser (QCL) light source, gas cells, and liquid nitrogen cooled solid-state detectors. These components are stabilized along the detection axis, vibrationally isolated, and housed in a temperature-controlled pressure vessel. Sample air enters a rear-facing inlet, is preconditioned using a Nafion drier (to remove water vapor), then is reduced in pressure to 60 mbar using a Teflon diaphragm pump. A second water trap, using dry ice, reduces the sample air dewpoint to less than –70C prior to detection. The CO2 mixing ratio of air flowing through the sample gas cell is determined by measuring absorption from a single infrared transition line at 4.32 microns relative to a reference gas of known concentration. In-flight calibrations are performed by replacing the air sample with reference gas every 10 minutes, and with a low-span and a high-span gas every 20 minutes.

Instrument Type: 
Measurements: 
Aircraft: 
NCAR G-V, NOAA P-3, DC-8 - AFRC
Point(s) of Contact: 

UAS Chromatograph for Atmospheric Trace Species

The Unmanned Aircraft Systems (UAS) Chromatograph for Atmospheric Trace Species (UCATS) was designed and built for autonomous operation on remotely piloted aircraft, but has also been used on manned aircraft. It uses chromatography to separate atmospheric trace gases along narrow heated columns, followed by precise and accurate detection with electron capture detectors. There are currently three chromatography channels on UCATS, which measure nitrous oxide (N2O) and sulfur hexafluoride (SF6); CFC-11, CFC-12, CFC-113, and halon 1211; and chloroform (CHCl3) and carbon tetrachloride. On an earlier version of UCATS, with only two channels, we also measured methane, hydrogen, and carbon monoxide, along with N2O and SF6. In addition, there is a small ozone instrument and a tunable diode laser instrument for water vapor. Gas is pumped into the instruments from an inlet outside the aircraft, measured, and vented. UCATS has flown on the Altair UAS, the GV during HIPPO, the NASA Global Hawk UAS during the Global Hawk Pacific (GloPac) and ATTREX missions, where a record was set for the longest duration research flight (more than 28 hours), the DC-8 for ATom, and the ER-2 for DCOTSS. UCATS is relatively lightweight and compact, making it ideal for smaller platforms, but it is easily adaptable to a mid-size platform like the GV or Global Hawk. The data are used to measure sources and sinks of trace gases involved in climate and air quality, as well as transport through the atmosphere.

UCATS is three different instruments in one enclosure:

1. 3-channel (formerly 2-channel, up until 2020) gas chromatograph (GC)
2. Dual-beam ozone photometer (OZ)
3. Tunable diode laser (TDL) spectrometer for water vapor (WV)

Measurements: 
Aircraft: 
Altair, Global Hawk - AFRC, DC-8 - AFRC, Gulfstream V - NSF, WB-57 - JSC, ER-2 - AFRC
Point(s) of Contact: 

Methane Near IR Tunable Diode Laser Absorption Spectrometer

The tunable diode laser (TDL) absorption instrument consists of a very high resolution scanning near-infrared diode laser spectrometer. The laser diode is a 3 mW single-mode distributed feedback (DFB) InGaAsP/InP laser that is cooled and temperature stabilized via a Peltier cooler. The laser is scanned in frequency by varying the injection current linearly. The resulting frequency scan covers the entire CH4 R(3) ro-vibrational transition in the 2ν3 overtone band at 1.653 μm.

Because the line strengths are very weak for this overtone transition, the laser beam is multipassed through a custom designed low volume astigmatic Herriott cell yielding a total optical pathlength of 245 m. The transmitted light is detected by a dc-coupled InGaAsP detector and digitized by a custom 20-bit A/D converter. This ADC is synchronized to the 16-bit software generated laser scan waveform running in continuous DMA mode. The laser scans continuously over the methane absorption at a rate of 0.25 - 0.5 KHz and coadds typically 100 scans in a 2 second integration time.

By use of the Beer-Lambert law, the methane number density is calculated from the direct absorption measurements. This calculation is performed by a non-linear least squares Voigt fitting program. The program constraints include the measured cell temperature and pressure in addition to the known absorption line strengths and pressure broadening coefficients associated with the three transitions that make up the R(3) lineshape.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Fourier Transform Infrared Spectrometer

The absorption of infrared solar radiation along a slant path to the sun is recorded from 2 to 15 micrometers. Six spectral filters are used to cover the region from 2-15 microns. An interferogram is recorded in about 10 seconds. Interferograms are transformed to produce spectra. Column amounts are retrieved by fitting the observed spectra using the non-linear least squares fitting code SFIT2 that employs an Optimal Estimation retrieval algorithm.

The major chlorine reservoirs (HCl and ClONO2), the important nitrogen-containing gases in the stratosphere (N2O, NO, NO2, and HNO3), stratospheric and tropospheric tracers (HF, CH4, C2H6, H2O, CO2), a major source CFC (CF2Cl2) and ozone may be routinely retrieved.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Uninhabited Aerial Vehicle Atmo Water Sensor Package

Measurements: 
Point(s) of Contact: 

PAN and Trace Hydrohalocarbon ExpeRiment

PANTHER uses Gas Chromatography with Electron Capture Detection and (GC-ECD) and Gas Chromatography with Mass Selective Detection (GC-MSD) to measure numerous trace gases, including methyl halides, HCFCs, peroxyacetyl nitrate, nitrous oxide, SF6, CFC-12, CFC-11, Halon-1211, methyl chloroform, carbon tetrachloride.

3 ECDs with packed columns (OV-101, Porapak-Q, molecular sieve).

1 ECD with a TE (thermal electric) cooled RTX-200 capillary column.

2-channel MSD (mass selective detector). The MSD analyzes two independent samples air concentrated onto TE cooled Haysep traps, which are then heated to desorb the analytes and separate using through two temperature programmed RTX-624 capillary columns.

With the exception of PAN, all channels of chromatography are normalized to a stable in-flight calibration gas references to NOAA scales. The PAN data are normalized to an in-flight PAN source of ≈ 100 ppt with ±5 % reproducibility. This source is generated by efficient photolytic conversion of NO in the presence of acetone. Detector non-linearity is taken out by lab calibrations for all molecules.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

JPL Mark IV Balloon Interferometer

The MkIV interferometer operates in solar absorption mode, meaning that direct sunlight is spectrally analyzed and the amount of various gases at different heights in the Earth's atmosphere is derived from the shapes and depths of their absorption lines. The optical design of the MkIV interferometer is based largely on that of the ATMOS instrument, which has flown four times on the Space Shuttle. The first three mirrors in the optical path comprise the suntracker. Two of these mirrors are servo-controlled in order to compensate for any angular motion of the observation platform. The subsequent wedged KBr plates, flats, and cube-corner retro-reflectors comprise a double-passed Michelson interferometer, whose function is to impart a wavelength-dependent modulation to the solar beam. This is achieved by sliding one of the retro-reflectors at a uniform velocity so that the recombining beams interfere with each other. A paraboloid then focusses the solar beam onto infrared detectors, which measure the interferometrically modulated solar signal. Finally, Fourier transformation of the recorded detector outputs yields the solar spectrum. An important advantage of the MkIV Interferometer is that by employing a dichroic to feed two detectors in parallel, a HgCdTe photoconductor for the low frequencies (650-1850 cm-1) and a InSb photodiode for the high frequencies (1850-5650 cm-1), the entire mid-infrared region can be observed simultaneously with good linearity and signal-to-noise ratio. In this region over 30 different gases have identifiable spectral signatures including H2O, O3, N2O, CO, CH4, NO, NO2, HNO3, HNO4, N2O5, H2O2, ClNO3, HOCl, HCl, HF, COF2, CF4, SF6, CF2ClCFCl2, CHF2Cl, CF2Cl2, CFCl3, CCl4, CH3Cl, C2H2, C2H6, OCS, HCN, N2, O2, CO2 and many isotopic variants. The last three named gases, having well known atmospheric abundances, are important in establishing the observation geometry of each spectrum, which otherwise can be a major source of uncertainty. Similarly, from analysis of T-sensitive CO2 lines, the temperature profile can be accurately determined. The simultaneity of the observations of all these gases greatly simplifies the interpretation of the results, which are used for testing computer models of atmospheric transport and chemistry, validation of satellite data, and trend determination.

Although the MkIV can measure gas column abundances at any time during the day, the highest sensitivity to atmospheric trace gases is obtained by observing sunrise or sunset from a balloon. The very long (~ 400 km) atmospheric paths traversed by incoming rays in this observation geometry also make this so-called solar occultation technique insensitive to local contamination.

Instrument Type: 
Aircraft: 
Balloon, DC-8 - AFRC
Point(s) of Contact: 

Pages

Subscribe to RSS - CH4