Advanced Whole Air Sampler

90 samples/flight
–7 x 10 sample + 1 x 8 sample + 2 x 6 sample modules

New canisters/valves/manifold design/control system

Fill times
–14 km 30 – 40 sec
–16 km 40 – 50 sec
–18 km 50 – 60 sec
–20 km 100 – 120 sec (estimated)

Analysis in UM lab: GC/MS; GC/FID; GC/ECD; GC/RGD

Instrument Type: 
Instrument Team: 

PAN and Trace Hydrohalocarbon ExpeRiment

PANTHER uses Electron Capture Detection and Gas Chromatography (ECD-GC) and Mass Selective Detection and Gas Chromatography (MSD-GC) to measure numerous trace gases, including Methyl halides, HCFCs, PAN, N20, SF6, CFC-12, CFC-11, Halon-1211, methyl chloroform, carbon tetrachloride.

3 ECD (electron capture detectors), packed columns (OV-101, Porpak-Q, molecular sieve).

1 ECD with a TE (thermal electric) cooled RTX-200 capillary column.

2-channel MSD (mass selective detector). The MSD analyses two independent samples concentrated onto TE cooled Haysep traps, then passed through two temperature programmed RTX-624 capillary columns.

With the exception of PAN, all channels of chromatography are normalized to a stable in-flight calibration gas references to NOAA scales. The PAN data is normalized to an in-flight PAN source of ≈ 100 ppt with ±5 % reproducibility. This source is generated by efficient photolytic conversion of NO in the presence of acetone. Detector non-linearity is taken out by lab calibrations for all molecules.

Instrument Type: 
Instrument Team: 

JPL Mark IV Balloon Interferometer

The MkIV interferometer operates in solar absorption mode, meaning that direct sunlight is spectrally analyzed and the amount of various gases at different heights in the Earth's atmosphere is derived from the shapes and depths of their absorption lines. The optical design of the MkIV interferometer is based largely on that of the ATMOS instrument, which has flown four times on the Space Shuttle. The first three mirrors in the optical path comprise the suntracker. Two of these mirrors are servo-controlled in order to compensate for any angular motion of the observation platform. The subsequent wedged KBr plates, flats, and cube-corner retro-reflectors comprise a double-passed Michelson interferometer, whose function is to impart a wavelength-dependent modulation to the solar beam. This is achieved by sliding one of the retro-reflectors at a uniform velocity so that the recombining beams interfere with each other. A paraboloid then focusses the solar beam onto infrared detectors, which measure the interferometrically modulated solar signal. Finally, Fourier transformation of the recorded detector outputs yields the solar spectrum. An important advantage of the MkIV Interferometer is that by employing a dichroic to feed two detectors in parallel, a HgCdTe photoconductor for the low frequencies (650-1850 cm-1) and a InSb photodiode for the high frequencies (1850-5650 cm-1), the entire mid-infrared region can be observed simultaneously with good linearity and signal-to-noise ratio. In this region over 30 different gases have identifiable spectral signatures including H2O, O3, N2O, CO, CH4, NO, NO2, HNO3, HNO4, N2O5, H2O2, ClNO3, HOCl, HCl, HF, COF2, CF4, SF6, CF2ClCFCl2, CHF2Cl, CF2Cl2, CFCl3, CCl4, CH3Cl, C2H2, C2H6, OCS, HCN, N2, O2, CO2 and many isotopic variants. The last three named gases, having well known atmospheric abundances, are important in establishing the observation geometry of each spectrum, which otherwise can be a major source of uncertainty. Similarly, from analysis of T-sensitive CO2 lines, the temperature profile can be accurately determined. The simultaneity of the observations of all these gases greatly simplifies the interpretation of the results, which are used for testing computer models of atmospheric transport and chemistry, validation of satellite data, and trend determination.

Although the MkIV can measure gas column abundances at any time during the day, the highest sensitivity to atmospheric trace gases is obtained by observing sunrise or sunset from a balloon. The very long (~ 400 km) atmospheric paths traversed by incoming rays in this observation geometry also make this so-called solar occultation technique insensitive to local contamination.

Instrument Type: 
Balloon, DC-8 - AFRC
Instrument Team: 

Airborne Chromatograph For Atmospheric Trace Species

ACATS-IV is a 4-channel gas chromatograph with electron capture detection (ECD) that measures a variety of halocarbons and other long-lived trace gases in the stratosphere. The instrument is currently configured to measure CFC-11 (CCl3F), CFC-12 (CCl2F2), CFC-113 (CCl2FCClF2), methyl chloroform (CH3CCl3), carbon tetrachloride (CCl4), halon-1211 (CBrClF2), chloroform (CHCl3), methane (CH4), and hydrogen (H2) every 125 s, and nitrous oxide (N2O) and sulfur hexafluoride (SF6) every 250 s. Each channel is comprised of a sample loop (2-10 cm3 volume), gas sampling valve (GSV), chromatographic column pair, ECD, electrometer, and several flow, temperature, and pressure controllers. In-flight calibration is carried out every 625 s (1250 s for N2O and SF6) by injecting a dried, whole air standard containing approximately 80% of tropospheric mixing ratios.

Instrument Type: 
Instrument Team: 
Subscribe to RSS - CFCl3