Laser Induced Fluorescence – Sulfur Dioxide

The LIF-SO2 instrument detects sulfur dioxide at the single-part per trillion (ppt) level using red-shifted laser-induced fluorescence. It has operated on the WB-57 and Global Hawk aircraft in the UT/LS, as well as on the DC-8. Sulfur Dioxide is an important precursor for aerosols including nucleation of new particles globally and can be greatly enhanced in the stratosphere following explosive volcanic eruptions. An important implication of the Asian Monsoon is transport of aerosol precursors including SO2 into the lower stratosphere.

Instrument Type: 
Point(s) of Contact: 

Chemical Ionization Mass Spectrometer

The CIMS instrument consists of a low pressure ion molecule reactor (IMR) coupled to a quadrupole mass filter by an actively pumped collisional dissociation chamber (CDC) and an octopole ion guide. The vacuum system is a 100 mm outer diameter stainless steel chamber evacuated with two small turbo pumps (70 l s-1). The mass filter is a set of 9.5 mm diameter quadrupole rods housed in the main vacuum chamber. The CDC is a short 80 mm diameter chamber that houses an octopole ion guide and is evacuated with a hybrid molecular drag pump. The IMR is evacuated with a scroll pump (300 l min-1) that also serves as the backing pump for the mass spectrometer.

Click here for the Collaborative Ground and Airborne Observations description page.

Instrument Type: 
DC-8 - AFRC, Gulfstream V - NSF
Point(s) of Contact: 

Airborne Scanning Microwave Limb Sounder

The Airborne Scanning Microwave Limb Sounder (A-SMLS) makes wide-swath vertical profile observations of the composition
of the upper troposphere and lower stratosphere (the atmospheric region from ~10–20km altitude). A-SMLS measurements are
well suited to studies of convective outflow, long-range pollution transport, and exchange of air between the
troposphere and stratosphere. These atmospheric processes have strong impacts on climate and air quality but are
currently incompletely understood. Improved understanding of these issues is one of the main goals of NASA’s atmospheric
composition Earth science focus area. A-SMLS airborne observations reflect the priority spaceborne “Ozone and Trace Gas”
observables identified in the recent Decadal Survey.

A-SMLS was initially developed and flown on the WB-57 under the NASA Instrument Incubator Program (IIP), following
which, it was adapted to the ER-2 platform. Subsequent work, funded under an additional IIP, has upgraded the receivers
to ones that require cooling to only 70K rather than the previously needed 4K, and to use newer technology digital
spectrometers. Test flights for A-SMLS in this new configuration are planned, but further work, proposed here, is needed
to make the instrument fully “campaign ready”.

A-SMLS observes a ~300km-wide swath ~300km ahead of the aircraft in a 2D raster scan (azimuth and elevation), with
~10x10km horizontal sampling (across and along-track). As typically configured, A-SMLS measures water vapor, ozone, and
carbon monoxide. Retuning of the instrument (including in flight) can provide measurements of other species (including
N2O, HCN, CH3CN, H2CO, and others).

The instrument would be a particularly valuable addition to multi-aircraft campaigns. The broad swath A-SMLS
observations from the ER-2 could be used in near-real-time to help guide lower altitude aircraft carrying in situ
sensors to regions of interest.

As part of NASA's Airborne Instrument Technology Transition (AITT) program, the instrument is currently being updated to
help cement its suitability for campaign-mode operations, specifically, this involves:

- Addition of a liquid cooling loop to transfer waste heat from the existing ~70K cryocooler to the outer skin of the
ER-2 wing pod.

- Development of an “intelligent scan” system that accounts for aircraft orientation etc. when performing the 2D
raster limb scan on the atmosphere.

- Completion of a thorough ground-based instrument calibration.

- Development of an on-board radiance compression scheme that will enable key data to be transferred to the ground for
use in real-time flight planning as described above.

- Updates to the analysis algorithms software used for Aura MLS, enabling their application to A-SMLS observations.

Instrument Type: 
WB-57 - JSC (no longer fits), ER-2 - AFRC
Point(s) of Contact: 

Chemical Ionization Mass Spectrometer

The single mass analyzer CIMS (S-CIMS) was developed for use on NASA’s ER-2 aircraft. Its first measurements were made in 2000 (SOLVE). Subsequently, it has flown on the NASA DC-8 aircraft for INTEX-NA, DICE, TC4, and ARCTAS, as well as on the NCAR C-130 during MILAGRO/INTEX-B. HNO3 is measured by selective ion chemical ionization via the fluoride transfer reaction: CF3O- + HNO3 → HF • NO3- + CF2O In addition to its fast reaction rate with HNO3, CF3O- can be used to measure additional acids and nitrates as well as SO2 [Amelynck et al., 2000; Crounse et al., 2006; Huey et al., 1996]. We have further identified CF3O- chemistry as useful for the measurement of less acidic species via clustering reactions [Crounse et al., 2006; Paulot et al., 2009a; Paulot et al., 2009b; St. Clair et al., 2010]: CF3O- + HX → CF3O- • HX where, e.g., HX = HCN, H2O2, CH3OOH, CH3C(O)OOH (PAA) The mass analyzer of the S-CIMS instrument has recently been upgraded from a quadrupole to a time-of-flight (ToF) analyzer. The ToF admits the sample ion beam to the ion extractor, where a pulse of high voltage orthogonally deflects and accelerates the ions into the reflectron, which in turn redirects the ions toward the multichannel plate detector. Ions in the ToF follow a V-shaped, 43 cm path from extractor to detector, separating by mass as the smaller ions are accelerated to greater velocities by the high voltage pulse. The detector collects the ions as a function of time following each extractor pulse. The rapid-scan collection of the ToF guarantees a high temporal resolution (1 Hz or faster) and simultaneous data products from the S-CIMS instrument for all mass channels [Drewnick et al., 2005]. We have flown a tandem CIMS (TCIMS) instrument in addition to the SCIMS since INTEX-B (2006). The T-CIMS provides parent-daughter mass analysis, enabling measurement of compounds precluded from quantification by the S-CIMS due to mass interferences (e.g. MHP) or the presence of isobaric compounds (e.g. isoprene oxidation products) [Paulot et al., 2009b; St. Clair et al., 2010]. Calibrations of both CIMS instruments for HNO3 and organic acids are performed in flight using isotopically-labeled reagents evolved from a thermally-stabilized permeation tube oven [Washenfelder et al., 2003]. By using an isotopically labeled standard, the product ion signals are distinct from the natural analyte and calibration can be performed at any time without adversely affecting the ambient measurement. We also fly calibration standards for H2O2 (evolved from urea-hydrogen peroxide) and MHP (from a diffusion vial).

Instrument Type: 
Point(s) of Contact: 

Airborne Compact Atmospheric Mapper

Two spectrographs + HD video camera

Air Quality (AQ) 304:520 nm 0.8 nm resolution (NO2, O3, UV absorbing aerosols, SO2, HCHO)

Ocean Color (OC) 460:900 nm 1.5 nm resolution

Video camera (2592x1936 pixels) –3 pixel FWHM

Instrument Type: 
Point(s) of Contact: 
Subscribe to RSS - SO2