Submillimeter Limb Sounder

The Submillimeterwave Limb Sounder (SLS) is a heterodyne radiometer measuring thermal emission spectra near 640 GHz (for detection of ClO, HCl, and O3) and 604 GHz. (for detection of HNO3 and N2O) designed for use on high altitude balloons and aircraft. The instrument consists of five subsystems:

-optics which define the instrument field of view (FOV)
-radiometer front-ends which down converts incoming radiance signals
-intermediate frequency (IF) stage which selects and frequency shifts signal bands
-spectrometers which frequency resolve and detect the incoming power spectrum
-command and data handling which controls the instrument and transmits data to the ground

Limb scanning is accomplished by a flat mirror (~20 cm diameter) connected to a stepper motor (0.2 steps) and 14 bit position encoder. This mirror is also used for gain and zero calibration by viewing an absorber target located below the mirror and upward at 47° elevation angle to view the cold sky. A set of three off-axis parabolic reflectors form the instrument field of view (0.35 full width at half maximum) and couple limb radiance to the mixer input waveguide. These reflectors are oversized (~30 dB edge taper) to minimize side lobes in the FOV. Pointing and beam shape were verified by scanning the instrument FOV across the emission from a 600 GHz transmitter (multiplied output of a Gunn oscillator) located in the receiver optical far-field.

The radiometer front-end is an uncooled second harmonic mixer using a waveguide mounted Schottky diode. The radiometer is operated double side band (DSB), i.e., spectral features occurring symmetrically above and below the effective local oscillator frequency (637.050 GHz) appear together in the IF output spectrum. The diode is pumped at a 318.525 GHz. This source is generated by a tripled 106.175 GHz phase-locked InP Gunn oscillator and wave guide coupled to the mixer block. The mixer produces an IF output spectrum of 10.5 to 13 GHz, which corresponds to signals at the mixer input at 647.5 GHz to 650.0 GHz (in the radiometer upper side band) and 626.5 GHz to 624.1 GHz ( in the lower side band). The design of the 604 GHz radiometer system is similar to 637 GHz system but operates at a lower IF frequency of 2 to 3 GHz.

Diagram of the SLS frequency down-conversion scheme. RF signals enter the signal flow path through mixer feeds at the left of the diagram. At the right side, the signal flow enters a set of UARS MLS-type filterbank spectrometers where bands are further spectrally resolved, power detected, and digitized.

Instrument Type: 
Measurements: 
Aircraft: 
Balloon, ER-2 - AFRC
Point(s) of Contact: 

Airborne Scanning Microwave Limb Sounder

The Airborne Scanning Microwave Limb Sounder (A-SMLS) makes wide-swath vertical profile observations of the composition
of the upper troposphere and lower stratosphere (the atmospheric region from ~10–20km altitude). A-SMLS measurements are
well suited to studies of convective outflow, long-range pollution transport, and exchange of air between the
troposphere and stratosphere. These atmospheric processes have strong impacts on climate and air quality but are
currently incompletely understood. Improved understanding of these issues is one of the main goals of NASA’s atmospheric
composition Earth science focus area. A-SMLS airborne observations reflect the priority spaceborne “Ozone and Trace Gas”
observables identified in the recent Decadal Survey.

A-SMLS was initially developed and flown on the WB-57 under the NASA Instrument Incubator Program (IIP), following
which, it was adapted to the ER-2 platform. Subsequent work, funded under an additional IIP, has upgraded the receivers
to ones that require cooling to only 70K rather than the previously needed 4K, and to use newer technology digital
spectrometers. Test flights for A-SMLS in this new configuration are planned, but further work, proposed here, is needed
to make the instrument fully “campaign ready”.

A-SMLS observes a ~300km-wide swath ~300km ahead of the aircraft in a 2D raster scan (azimuth and elevation), with
~10x10km horizontal sampling (across and along-track). As typically configured, A-SMLS measures water vapor, ozone, and
carbon monoxide. Retuning of the instrument (including in flight) can provide measurements of other species (including
N2O, HCN, CH3CN, H2CO, and others).

The instrument would be a particularly valuable addition to multi-aircraft campaigns. The broad swath A-SMLS
observations from the ER-2 could be used in near-real-time to help guide lower altitude aircraft carrying in situ
sensors to regions of interest.

As part of NASA's Airborne Instrument Technology Transition (AITT) program, the instrument is currently being updated to
help cement its suitability for campaign-mode operations, specifically, this involves:

- Addition of a liquid cooling loop to transfer waste heat from the existing ~70K cryocooler to the outer skin of the
ER-2 wing pod.

- Development of an “intelligent scan” system that accounts for aircraft orientation etc. when performing the 2D
raster limb scan on the atmosphere.

- Completion of a thorough ground-based instrument calibration.

- Development of an on-board radiance compression scheme that will enable key data to be transferred to the ground for
use in real-time flight planning as described above.

- Updates to the analysis algorithms software used for Aura MLS, enabling their application to A-SMLS observations.

Instrument Type: 
Aircraft: 
WB-57 - JSC (no longer fits), ER-2 - AFRC
Point(s) of Contact: 
Subscribe to RSS - Limb Sounder