Quartz Crystal Microbalance/Surface Acoustic Wave

QCM/SAW was developed to perform in-situ real time measurements of aerosols and chemical vapors in the stratosphere. The instrument is integrated into a fuselage centerline pod. The instrument is controlled by an embedded micro controller. The preset sampling sequence is triggered by a single command issued by the pilot. Using an air pump, samples are collected and decelerated in two stages to match the velocity requirement at the cascade impactor. Once the sample enters the cascade impactor, aerosols contained in the sample are separated into 8 size bands. The separated particles are collected on the surface of the piezoelectric microbalance crystals. The samples are analyzed post-flight.

Point(s) of Contact: 

Multi-sample Aerosol Collection System

The Multiple Aerosol Collection System contains an impactor collector which permits the collection of particles on electron microscope grids for later chemical-constituent analysis. The collector consists of a two stages. In the first stage the pressure of the sample is reduced by a factor of two without loosing particles by impaction on walls. The second stage consists of a thin plate impactor which collects efficiently even at small Reynolds numbers. The system collects particles as small as 0.02 micron at WB-57 cruise altitudes. As many as 24 samples can be collected in a flight.

Point(s) of Contact: 

Cloud Spectrometer and Impactor

The Cloud Spectrometer and Impactor (CSI) combines the counterflow virtual impactor with a new lightweight cloud droplet probe to allow for detailed studies of total condensed water (TCW), liquid and ice, in clouds. The CSI can measure TCW from ~ 1 mg/m3 to several g/m3 depending on the configuration; in addition particle sizes from 2 to 50 μm are resolved with the droplet probe. The instrumentation can be mounted externally on most aircraft.

Point(s) of Contact: 

Counterflow Virtual Impactor

The NCAR counterflow virtual impactor (CVI) (Noone et al., 1988; Twohy et al., 1997) is an airborne instrument that can be used for studies of aerosol/cloud interactions, cloud physics, and climate. At the CVI inlet tip, cloud droplets or ice crystals larger than about 8 µm aerodynamic diameter are separated from the interstitial aerosol and impacted into dry nitrogen gas. This separation is possible via a counterflow stream of nitrogen out the CVI tip, which assures that only larger particles (cloud droplets or ice crystals) are sampled. Because droplets or crystals in a sampling volume of about 200 l/min are impacted into a sample stream of approximately 10 l/min, concentrations within the CVI are significantly enhanced. The water vapor and non-volatile residual nuclei remaining after droplet evaporation are sampled downstream of the inlet with selected instruments. These may include a Lyman-alpha or similar hygrometer, a condensation nucleus counter, an optical particle counter, filters for chemical analyses, or user instruments.

Point(s) of Contact: 
Subscribe to RSS - Counterflow virtual impactor