Multispectral Atmospheric Mapping Sensor

The MAMS is a modified Daedalus Scanner flown aboard the ER-2 aircraft. It is designed to study weather related phenomena including storm system structure, cloud-top temperatures, and upper atmospheric water vapor. The scanner retains the eight silicon-detector channels in the visible/near-infrared region found on the Daedalus Thematic Mapper Simulator, with the addition of four channels in the infrared relating to specific atmospheric features.

The scanner views a 37 kilometer wide scene of the Earth from the ER2 altitude of about 20 kilometers. Each MAMS footprint (individual field of view) has a horizontal resolution of 100 meters at nadir. Since the ER2 travels at about 208 meters per second, a swath of MAMS data 37 by 740 kilometers is collected every hour. The nominal duration of an ER2 flight is 6 hours (maximum of about 7 hours).

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Airborne Earth Science Microwave Imaging Radiometer

The Airborne Earth Science Microwave Imaging Radiometer (AESMIR) is a passive microwave airborne imager covering the 6-100 GHz bands that are essential for observing key Earth System elements such as precipitation, snow, soil moisture, ocean winds, sea ice, sea surface temperature, vegetation, etc.

AESMIR’s channels are configured to enable it to simulate various channels on multiple satellite radiometers, including AMSR-E, SSMI, SSMIS, AMSU, ATMS, TMI, GMI, ATMS, & MIS. Programmable scan modes include conical and cross-track scanning. As such, AESMIR can serve as an inter-satellite calibration tool for constellation missions (e.g., GPM) as well as for long-term multi-satellite data series (Climate Data Records).

The most unique/cutting edge feature of the instrument is its coverage of key water cycle microwave bands in a single mechanical package—making efficient & cost-effective use of limited space on research aircraft, and maximizing the possibilities for co-flying with other instruments to provide synergistic science. State-of-the-art calibration, fully-polarimetric (4-Stokes) observations, and the ability to accommodate large/heavy sensors (up to 300 kg) are other features of AESMIR. AESMIR currently flies on the NASA P-3 aircraft.

With these capabilities, AESMIR is an Earth Science facility for new microwave remote sensing discovery, pre-launch algorithm development, and post-launch Calibration/Validation activities, as well as serving as a technology risk reduction testbed for upcoming spaceborne radiometers. In the latter role, AESMIR is already supporting the GPM, Aquarius, and SMAP missions.

Instrument Type: 
Point(s) of Contact: 

Airborne Expendable Conductivity Temperature Depth Probe

The AXCTDs measure the ocean salinity, or saltiness (proportional to conductivity), and temperature, which are necessary 1) for computing ocean density, stability and buoyancy, and 2) for identifying different ocean water masses.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Airborne Raman Ozone, Temperature, and Aerosol Lidar

This is a stratospheric lidar which is configured to fly on the NASA DC-8. It is a zenith viewing instrument, which makes vertical profile measurements of ozone, aerosols and temperature. Stratospheric ozone can be measured at solar zenith angles greater than ~30 degrees, while temperature and aerosols require SZA > 90 degrees. The SNR is maximized under dark coonditions. The measurement of Near-field water vapor measurements is being investigated and could be readily implemented. The instrument utilizes a XeCl excimer laser and a Nd-YAG laser to make DIAL, Raman DIAL, and backscatter measurements. A zenith viewing 16" telescope receives the lidar returns.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Pages

Subscribe to RSS - Temperature