Compact Raman Lidar

CRL can provide simultaneous water vapor, temperature, aerosol, and cloud profiles within the planetary boundary layer (PBL) from UWKA, NSF/NCAR C-130, and NOAA P-3. It uses a compact, lightweight transmitting-receiving system (12-inch telescope). Although the 50-mJ CRL laser limits water vapor measurement to short-range under high solar background conditions, past CRL measurements demonstrated that CRL measurements offer excellent measurements to characterize PBL structures from airborne platforms.   CRL enhances PBL observations at horizontal resolutions ranging from ~100 m to ~1 km and can revolutionize a range of atmospheric processes studies. These include: advancing our understanding of small-scale interactions between clouds and their environment, investigating air-sea and air-land interactions; documenting boundary layer structure over heterogeneous surfaces and under cloudy conditions; examining the mesoscale atmospheric environments and dynamics.

Instrument Type: 
Aircraft: 
University of Wyoming King Air, NSF/NCAR C-130, WP-3D Orion - NOAA
Point(s) of Contact: 

Multi-function Airborne Raman Lidar

MARLi was an NSF-MRI funded new instrument development to provide water vapor, temperature, aerosol, and cloud profiles within the planetary boundary layer (PBL). MARLi was successfully flight-tested on the UWKA and the NSF/NCAR C-130 for over sixty-hours in the summer of 2016.  
MARLi transforms our capability to observe the atmosphere at horizontal resolutions ranging from ~100 m to ~1 km and can revolutionize a range of atmospheric processes studies. These include: advancing our understanding of small-scale interactions between clouds and their environment, investigating air-sea and air-land interactions; documenting boundary layer structure over heterogeneous surfaces and under cloudy conditions; examining the mesoscale atmospheric environments and dynamics.

Instrument Type: 
Aircraft: 
NSF/NCAR C-130, University of Wyoming King Air, P-3 Orion - WFF
Point(s) of Contact: 

Advanced Vertical Atmospheric Profiling System

The Advanced Vertical Atmospheric Profiling System (AVAPS) is the dropsonde system for the Global Hawk. The Global Hawk dropsonde is a miniaturized version of standard RD-93 dropsondes based largely on recent MIST driftsondes deployed from balloons. The dropsonde provides vertical profiles of pressure, temperature, humidity, and winds. Data from these sondes are transmitted in near real-time via Iridium or Ku-band satellite to the ground-station, where additional processing will be performed for transmission of the data via the Global Telecommunications System (GTS) for research and operational use. The dispenser is located in zone 61 in the Global Hawk tail and is capable of releasing up to 88 sondes in a single flight.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Water-Based Condensation Nucleus Counter

The primary condensation nucleus counter used on the NSF/NCAR G-V is a modified version of the TSI 3786 Ultra-Fine Water-Based Condensation Nucleus Counter, with modifications made by Aerosol Dynamics, Inc., and Quant. The modifications were primarily to lower the temperature in the region where droplets grow on condensation nuclei, which was necessary because the 60 C growth temperature of the standard 3786 is the boiling point when the pressure is about 200 mb, and the GV flies well above this altitude. Other changes were made to the flow control, flow rates, pumps, and water injection scheme to adapt to the large altitude range of the G-V. One substantial advantage of this instrument over other CN counters is that it does not depend on butanol as the operating fluid and so does not require handling of a flammable gas around the aircraft or flight with a flammable substance.

The threshold particle size detected by the WCN is about 5 nm, becoming larger at low pressure but remaining below the ultra-fine size range (<10 nm) at pressures as low as 150 mb. The instrument also is relatively insensitive to coincidence losses, continuing to perform with coincidence losses <10% up to concentrations around 105 cm-3. Tubing losses can be significant for small particles, so size-dependent and pressure-dependent corrections may be needed unless the lines can be kept very short (not more than a few m).

Instrument Type: 
Measurements: 
Aircraft: 
Gulfstream V - NSF
Point(s) of Contact: 

Cloud Aerosol and Precipitation Spectrometer

Measures concentration and records images of cloud particles from approximately 50-1600 microns in diameter with a resolution of 25 microns per pixel. Measures cloud droplet and aerosol concentrations within the size range of 0.5-50 microns.

The three DMT instruments included in the CAPS are the Cloud Imaging Probe (CIP), the Cloud and Aerosol Spectrometer (CAS), and the Hotwire Liquid Water Content Sensor (Hotwire LWC).

The CIP, which measures larger particles, operates as follows. Shadow images of particles passing through a collimated laser beam are projected onto a linear array of 64 photodetectors. The presence of a particle is registered by a change in the light level on each diode. The registered changes in the photodetectors are stored at a rate consistent with probe velocity and the instrument’s size resolution. Particle images are reconstructed from individual “slices,” where a slice is the state of the 64-element linear array at a given moment in time. A slice must be stored each time interval that the particle advances through the beam a distance equal to the resolution of the probe. Optional grayscale imaging gives three levels of shadow recording on each photodetector, allowing more detailed information on the particles.

The CAS, which measures smaller particles, relies on light-scattering rather than imaging techniques. Particles scatter light from an incident laser, and collecting optics guide the light scattered in the 4° to 12° range into a forward-sizing photodetector. This light is measured and used to infer particle size. Backscatter optics also measure light in the 168° to 176° range, which allows determination of the real component of a particle’s refractive index for spherical particles.

The Hotwire LWC instrument estimates liquid water content using a heated sensing coil. The system maintains the coil at a constant temperature, usually 125 °C, and measures the power necessary to maintain this temperature. More power is needed to maintain the temperature as droplets evaporate on the coil surface and cool the surface and surrounding air. Hence, this power reading can be used to estimate LWC. Both the LWC design and the optional PADS software contain features to ensure the LWC reading is not affected by conductive heat loss.

Point(s) of Contact: 

Ozonesondes (NOAA)

NOAA Ozonesonde payloads include an Electrochemical Concentration Cell (ECC) ozonesonde, and a radiosonde to telemeter data to the ground and provide in situ measurements of temperature, pressure, relative humidity (surface to upper troposphere), and GPS coordinates. Sounding data typically reach an altitude of 28 km.

Measurements: 
Aircraft: 
Balloon
Point(s) of Contact: 

Balloonsondes (NOAA)

NOAA Balloonsonde payloads include a NOAA Frost Point Hygrometer (FPH), an Electrochemical Concentration Cell (ECC) ozonesonde, and a radiosonde to telemeter data to the ground and provide in situ measurements of temperature, pressure, relative humidity (surface to upper troposphere), and GPS coordinates. Sounding data typically reach an altitude of 28 km.

Measurements: 
Aircraft: 
Balloon
Point(s) of Contact: 

Dropsondes - DC-8

DC-8 dropsondes measure the vertical profile of atmospheric temperature, pressure, relative humidity, and wind speed and direction as the sonde falls from altitude to ocean surface.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

ER-2 High Altitude Dropsonde

Measures the vertical profile of atmospheric temperature, pressure, relative humidity, and wind speed and direction as the sonde falls from altitude to ocean surface.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Turbulent Air Motion Measurement System

The TAMMS is composed of several subsystems including: (1) distributed pressure ports coupled with absolute and differential pressure transducers and temperature sensors, (2) aircraft inertial and satellite navigation systems, (3) a central data acquisition/processing system, and (4) water vapor instruments and potentially other trace gas or aerosol sensors.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Pages

Subscribe to RSS - Temperature