VIS is a standard video camera packaged for flight use and mounted in a downward looking orientation. It provides a continuous view of the weather and terrain below the aircraft flight track. The VIS camera has a resolution of 20 meters and will be mounted to verify the aircraft flight track.
Imagery
UAVSAR, a reconfigurable, polarimetric L-band synthetic aperture radar (SAR), is specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements.
Differential interferometry can provide key deformation measurements, and is important for studies of earthquakes, volcanoes and other dynamically changing phenomena.
Using precision real-time GPS and a sensor controlled flight management system, the system can fly predefined paths with great precision (to be within a 10 m diameter tube about the desired flight track).
The radar is designed to be operable on a UAV (Uninhabited Aerial Vehicle), but will initially be demonstrated on a NASA Gulfstream III. The radar is fully polarimetric, with a range bandwidth of 80 MHz (2 m range resolution), and a range swath greater than 16 km.
The antenna may be electronically steered along track to assure that the antenna beam can be directed independently, regardless of speed and wind direction.
Other features supported by the antenna include elevation monopulse and pulse-to-pulse re-steering capabilities that will enable some novel modes of operation. The system will nominally operate at 41,000 ft (13800 m).
The program began as an Instrument Incubator Project (IIP) funded by NASA Earth Science Technology Office (ESTO). Since 2018, UAVSAR facility instrument suite has been enhanced with two additional bands: P-band (AirMOSS) and Ka-band (GLISTIN-A). The P-band capability was originally added in 2012 to support the EVS-1 AirMOSS mission to observe sub-canopy and subsurface root zone soil moisture. The modification was accomplished by replacing UAVSAR's L-band front-end electronics and antenna with components that operate at P-band (420-440 MHz). The Ka-band single-pass interferometric SAR capability (GLISTIN-A) was added through NASA's Advanced Instrument Technology Transition program (AITT). The horizontally polarized GLISTIN-A (35.62-35.70 GHz) instrument generates high-precision, high resolution, large-swath digital surface models for ice surface topography mapping.
This is a Daedalus AADS-1268 scanner that flies on the ER-2 aircraft and simulates the LANDSAT Thematic Mapper instrument, with slightly higher spatial resolution. The TMS is used for collecting data similar in application to data collected by the Thematic Mapper (TM) sensor including Earth resources mapping, vegetation/landcover mapping, and geologic studies.
Sensor/Aircraft Parameters
Spatial Resolution: 25 meters (all bands) from 19.8 km (65,000 ft.)
Total Field of View: 42.5 degrees
Instant. Field of View: 1.25 mrad
Swath Width: 8.4 nmi (15.6 km) at 65,000 feet
Pixel/Scan Line: 716
Scan Rate: 12.5 scans/second
Ground Speed: 400 knots (206 m/sec)
Wild Heerbrugg RC-10 Mapping Cameras with a 9 x 9 inch image format are flown on virtually every ER-2 earth imaging mission. The RC-10s may be employed with six or twelve inch focal length lenses providing image scales of two miles to the inch and one mile to the inch respectively. RC-10 mounting stations include the ER-2 Q-bay, nose pod and the right and left wing pods.
The MASTER is similar to the MAS, with the thermal bands modified to more closely match the NASA EOS ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite instrument, which was launched in 1998. It is intended primarily to study geologic and other Earth surface properties. Flying on both high and low altitude aircraft, the MASTER has been operational since early 1998.
Instrument Type: Multispectral Imager
Measurements: VNIR/SWIR/MWIR/LWIR Imagery
The MASTER is similar to the MAS, with the thermal bands modified to more closely match the NASA EOS ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite instrument, which was launched in 1998. It is intended primarily to study geologic and other Earth surface properties. Flying on both high and low altitude aircraft, the MASTER has been operational since early 1998.
Instrument Type: Multispectral Imager
Measurements: VNIR/SWIR/MWIR/LWIR Imagery
The MODIS Airborne Simulator (MAS) is a multispectral scanner configured to approximate the Moderate-Resolution Imaging Spectrometer (MODIS), an instrument to be orbited on the NASA EOS-AM1 platform. MODIS is designed to measure terrestrial and atmospheric processes. The MAS was a joint project of Daedalus Enterprises, Berkeley Camera Engineering, and Ames Research Center. The MODIS Airborne Simulator records fifty spectral bands.
The MODIS Airborne Simulator (MAS) is a multispectral scanner configured to approximate the Moderate-Resolution Imaging Spectrometer (MODIS), an instrument to be orbited on the NASA EOS-AM1 platform. MODIS is designed to measure terrestrial and atmospheric processes. The MAS was a joint project of Daedalus Enterprises, Berkeley Camera Engineering, and Ames Research Center. The MODIS Airborne Simulator records fifty spectral bands.