Sub-categories: 

Airborne Visible and InfraRed Imaging Spectrometer - 3

The Airborne Visible and InfraRed Imaging Spectrometer 3 (AVIRIS-3) is an imaging spectrometer with a two-mirror telescope and Dyson-type spectrometer which are optically fast (F/1.8), span a wide swath (40-degree field of view over 1240 spatial pixels), and operate over the 380-2500 nm solar-reflected spectrum with 7.4 nm spectral sampling.  The spectrometer is identical in design as the EMIT spectrometer now operating in orbit on the ISS.

Instrument Type: 
Aircraft: 
B200 - Dynamic Aviation, G-III, G-V-JSC
Point(s) of Contact: 

Alaska’s Newest Lakes Are Belching Methane

“This lake wasn’t here 50 years ago.” Katey Walter Anthony, an ecologist at the University of Alaska-Fairbanks, dips her paddle into the water as her kayak glides across the lake. “Years ago, the ground was about three meters taller and it was a spruce forest,” she says. Big Trail Lake is a thermokarst lake, which means it formed due to permafrost thaw. Permafrost is ground that stays frozen year round; the permafrost in interior Alaska also has massive wedges of actual ice locked within the frozen ground.

Walking Back in Time to Learn About the Future of Permafrost

There’s a freezer door in the mountainside outside of Fairbanks, Alaska. Tom Douglas opens it and we step inside, breathing in cold air and musky dust as we start to walk back through time. This isn’t fantasy. It’s the Permafrost Tunnel run by the U.S. Army’s Cold Regions Research and Engineering Laboratory in Alaska, where Douglas is a Senior Scientist. Recently, Douglas led a group of scientists and pilots with NASA’s Arctic Boreal Vulnerability Experiment (ABoVE) on a tour through the Tunnel to learn about permafrost.

Evaluation of simulated soil carbon dynamics in Arctic-Boreal ecosystems

Huntzinger, D. N., et al. (2020), Evaluation of simulated soil carbon dynamics in Arctic-Boreal ecosystems, Environmental Research Letters, 15, 1-14, doi:10.1088/1748-9326/ab6784.

NASA Flights Detect Millions of Arctic Methane Hotspots

The Arctic is one of the fastest warming places on the planet. As temperatures rise, the perpetually frozen layer of soil, called permafrost, begins to thaw, releasing methane and other greenhouse gases into the atmosphere. These methane emissions can accelerate future warming—but to understand to what extent, we need to know how much methane may be emitted, when and what environmental factors may influence its release.

NASA Studies How Arctic Wildfires Change the World

Wildfires in the Arctic often burn far away from populated areas, but their impacts are felt around the globe. From field and laboratory work to airborne campaigns and satellites, NASA is studying why boreal forests and tundra fires have become more frequent and powerful and what that means for climate forecasting, ecosystems and human health.

Arctic-Boreal Vulnerability Experiment — ABoVE

Climate change in the Arctic and Boreal region is unfolding faster than anywhere else on Earth, resulting in reduced Arctic sea ice, thawing of permafrost soils, decomposition of long- frozen organic matter, widespread changes to lakes, rivers, coastlines, and alterations of ecosystem structure and function.

NASA’s Arctic Ecosystem Science Flights Begin

A NASA-led effort to advance our ability to monitor changing Arctic and boreal ecosystems has started its second season, with the first aircraft taking flight over Alaska and northwest Canada this month.

Uninhabited Aerial Vehicle Synthetic Aperture Radar

UAVSAR, a reconfigurable, polarimetric L-band synthetic aperture radar (SAR), is specifically designed to acquire airborne repeat track SAR data for differential interferometric measurements.

Differential interferometry can provide key deformation measurements, and is important for studies of earthquakes, volcanoes and other dynamically changing phenomena.

Using precision real-time GPS and a sensor controlled flight management system, the system can fly predefined paths with great precision (to be within a 10 m diameter tube about the desired flight track).

The radar is designed to be operable on a UAV (Uninhabited Aerial Vehicle), but will initially be demonstrated on a NASA Gulfstream III. The radar is fully polarimetric, with a range bandwidth of 80 MHz (2 m range resolution), and a range swath greater than 16 km.

The antenna may be electronically steered along track to assure that the antenna beam can be directed independently, regardless of speed and wind direction.

Other features supported by the antenna include elevation monopulse and pulse-to-pulse re-steering capabilities that will enable some novel modes of operation. The system will nominally operate at 41,000 ft (13800 m).

The program began as an Instrument Incubator Project (IIP) funded by NASA Earth Science Technology Office (ESTO). Since 2018, UAVSAR facility instrument suite has been enhanced with two additional bands: P-band (AirMOSS) and Ka-band (GLISTIN-A). The P-band capability was originally added in 2012 to support the EVS-1 AirMOSS mission to observe sub-canopy and subsurface root zone soil moisture. The modification was accomplished by replacing UAVSAR's L-band front-end electronics and antenna with components that operate at P-band (420-440 MHz). The Ka-band single-pass interferometric SAR capability (GLISTIN-A) was added through NASA's Advanced Instrument Technology Transition program (AITT). The horizontally polarized GLISTIN-A (35.62-35.70 GHz) instrument generates high-precision, high resolution, large-swath digital surface models for ice surface topography mapping.

Instrument Type: 
Measurements: 
Point(s) of Contact: 
Subscribe to RSS - ABoVE