In-Situ Measurements of Aerosol Optical Properties

Three instruments, a cavity ringdown (CRD) aerosol extinction spectrometer, a photoacoustic absorption spectrometer (PAS), and an ultra-high sensitivity aerosol size spectrometer (UHSAS) comprise the AOP package. The AOP package provides multi‐wavelength, multi-RH aerosol extinction and absorption measurements with fast response and excellent accuracy and stability on aircraft platforms. The instruments will also characterize the optics of black carbon (BC) mixing state, brown carbon, and water uptake of aerosol. Aerosol asymmetry parameter, needed for radiative transfer modeling, will be calculated from dry and humidified particle size distributions.

Instrument Type: 
Point(s) of Contact: 

Hawaii Group for Environmental Aerosol Research

1) Time of Flight Aerosol Mass Spectrometer (ToF-AMS)

Total and single particle characterization of volatile aerosol ionic and organic components (50-700nm). Uncertainty depends on species and concentration.

2) Single Particle Soot Photometer (SP2)

Single particle measure of BC (soot) mass in particles and determination of mixed particle size and non-BC coating using laser scattering and incandescence. 70-700nm. Single particle counting up to 10,000 per sec.

3) A size-resolved thermo-optic aerosol discriminator (30 s avg.):

Aerosol size distribution from 0.12 up to 7.0 μm, often where most aerosol mass, surface area and optical effects are dominant. Uses a modified Laser Optical Particle Counter (OPC) and computer controlled thermal conditioning system is used upstream (airstream dilution dried). Characterizes aerosol components volatile at 150, 300 and 400C and refractory aerosol at 400C (sea salt, dust and soot/flyash). (Clarke, 1991, Clarke et al., 2004). Uncertianty about 15%

4) Condensation Nuclei - heated and unheated (available at 1Hz)

Two butanol based condensation nuclei (CN) counter (TSI 3010) count all particles between 0.01-3.0 um. Total CN, refractory CN (those remaining at 300C after sulfate is removed) and volatile CN (by difference) are obtained as a continuous readout as a fundamental air mass indicator (Clarke et al. 1996). Uncertainty ~ 5%.

5) Aerodynamic Particle Sizer – (APS-TSI3320) – (<5min/scan)

To further characterize larger “dry” particles, including dust, an APS is operated which sizes particles aerodynamically from 0.8 to 20 μm into 50 channels. Uncertainty~10%.

6) Differential Mobility Analyzer with thermal conditioning – (<3 min/scan)

Volatility tandem thermal differential mobility analyzer (VTTDMA) with thermal analysis that provides size information (mass, surface area, number distributions) and their state of mixing over the 0.01 to 0.3μm size range (Clarke et al., 1998, 2007) for sampling times of about 1-3 minutes. Uncertainty ~10%

7) Nephelometer (10-7 m-1 detection for 60s avg., recorded every 1 sec.)

A 3 wavelength nephelometer (450, 550, 700nm) is used for total scattering and submicrometer scattering values using a Radiance Research single wavelength nephelometer (and thereby coarse dust scattering by difference).

8) Two Particle Soot Absorption Photometers (PSAP-Radiance Research; detection <0.1μg m-3 for 5 min. avg. )

The PSAP is used to quantify the spectral light absorption coefficient of the total and submicron aerosol (eg. soot, BC) at three wavelengths (450, 550, 660nm).

9) Humidity Dependent Light-Scattering (10-6 m-1 detection for 60s avg.; recorded every 1 s)

Two additional Radiance Research single-wavelength nephelometers are operated at two humidities (high/low) to establish the humidity dependence of light scattering, f(RH).

Point(s) of Contact: 

Aerosol Optical Properties

Aerosols (particulate matter) have a dramatic effect on radiative forcing of the climate, in some cases cooling and in other cases warming. The Fourth Assessment Report of the IPCC estimates that direct radiative forcing due to all aerosols is a cooling of -0.50 W m-2 with absorbing aerosol (black carbon) responsible for a warming of +0.22 W m-2, but the uncertainties associated with these numbers are very large. Better measurements of the optical properties of aerosols, especially absorption coefficient and asymmetry parameter, and their spatial and temporal distribution are required to reduce these uncertainties and improve the ability of models to predict climate change. Aero3X was designed to provide such measurements. It is a light weight (11 kg), compact (0.25 x 0.30 x 0.6 m), and fast (1 Hz sample rate) instrument intended for use on an Unmanned Aerial System (UAS) but suitable for flight on other aircraft and for surface measurements. Aero3X uses an off-axis cavity ring-down technique to measure extinction coefficient and a reciprocal nephelometry technique for measurement of total-, forward- and back-scatter coefficients at wavelengths of 405 nm and 675 nm. Its outstanding precision (0.1 Mm-1) and sensitivity (0.2 Mm- 1) allow the determination of absorption coefficient, single-scattering albedo, estimates of backscatter to extinction ratio and asymmetry parameter at both wavelengths, and Angstrom exponent. Together with its humidification system for measurement of the dependence of aerosol optical properties on relative humidity, these represent a complete set of the aerosol optical properties important to climate and air quality. Aero3X was designed to operate in pollution plumes where NO2 may cause interference with the measurement, therefore, a measurement of NO2 mixing ratio is also made.

Instrument Type: 
Point(s) of Contact: 
Subscribe to RSS - Particle Absorption