Medusa Whole Air Sampler

Medusa collects 32 cryogenically dried, flow and pressure controlled samples per flight. The samples are collected by an automated sampler into 1.5 L glass flasks that integrate over 25-s (1 e-fold) periods. Medusa provides discretely-sampled comparisons for onboard in situ O2/N2 ratio and CO2 measurements and unique measurements of Ar/N2 and 13C, 14C, and 18O isotopologues of CO2. The complementary measurements allow ground-truthing of onboard instrument measurements in a laboratory setting, where analysis conditions can often be more stringently controlled and carefully monitored. Isotope and argon measurements can provide additional information about land and ocean controls over the carbon cycle, and about the age and source of the air sampled.

Medusa consists of an onboard computer, two pressure controllers, two
 pumps, three multi-position selector
valves, and a host of other hardware that
control and direct the air samples. All air
is dried by passing it through traps
immersed in a -78 C dry ice bath, adjusted to match atmospheric pressure
at sea level, and then automatically isolated in a flask. Medusa flasks are analyzed on a sector-magnet mass spectrometer and a LiCor non-dispersive infrared CO2 analyzer by the Scripps O2 Program at Scripps Institution of Oceanography.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

NCAR Airborne Oxygen Instrument

The NCAR Airborne Oxygen Instrument measures O2 concentration using a vacuum-ultraviolet absorption technique.
 AO2 is based on earlier ship-board and laboratory instruments using the same technique, but has been designed specifically for airborne use to minimize
motion and thermal sensitivity and with a pressure and flow controlled inlet system. To achieve the high levels of precision needed, AO2 switches between sample gas and air
from a high-pressure reference cylinder
every 2.5 seconds. Atmospheric O2 concentrations are typically reported in units
of one part in 1,000,000 relative deviations
in the O2/N2 ratio, which are referred to as
 "per meg." AO2 has a 1-sigma precision of
± 2 per meg on a 5 second measurement.
 For comparison, this is equivalent to detecting the removal of one O2 molecule
 from 2.5 million molecules of air. At typical
flight speeds of 300 kts or climb/descent
rates of 1500 fpm, 5-seconds correspond to
a horizontal resolution of 750 m and a
vertical resolution of 40 m. The instrument includes an internal single-cell CO2 sensor (LI-840), which is used to correct the O2 measurements for dilution by CO2 and for scientific purposes. To minimize inlet
surface effects, the pressure in the inlet line
is actively controlled at the aircraft bulkhead.
The sample air is cryogenically dried in a
series of electropolished stainless steel traps immersed in a dry ice Fluorinert slurry. The
 AO2 system consists of a pump module, a cylinder module, an instrument module, and a dewar.

Measurements: 
Aircraft: 
Point(s) of Contact: 

Fabry-Perot Interferometer

A Fabry-Perot interferometer is constructed of two very flat, partially reflecting mirrors held parallel to one another at a fixed distance. Interference occurs among the multiple reflections leading to the condition that wavelengths that exactly divide the spacing between the mirrors by an integer are transmitted very efficiently and all other wavelengths are reflected. Thus if the plates are held fixed at a separation of 10 μm, then radiation at 10, 5, 3.333, … μm will be transmitted. Note that these wavelengths are equally spaced in energy according to the relationship E=hc/l, where l is the wavelength of the light and h and c are Planck’s constant and the speed of light, respectively. This particular FPI technique makes use of these multiple passbands to increase the measurement signal and the resulting signal to noise ratio.

A Fabry-Perot can be tuned to transmit different wavelengths by changing the (optical) spacing between the mirrors. This is commonly done by employing piezo-electric transducers to translate the mirrors by very small distances, while maintaining the very precise parallelism between them. Fixed gap Fabry-Perots can be tuned by tilting, which changes the effective path length between the plates; by using the thermal expansion and contraction of the spacers between the mirrors; and by changing the composition or pressure of the gas that fills the space between the plates, which alters the index of refraction thereby changing the optical separation. Finally, Fabry-Perots can be constructed using a solid substrate of fused silica or optical quality glass onto which reflective coatings are deposited. These devices can be angle tuned or temperature tuned.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

JPL Mark IV Balloon Interferometer

The MkIV interferometer operates in solar absorption mode, meaning that direct sunlight is spectrally analyzed and the amount of various gases at different heights in the Earth's atmosphere is derived from the shapes and depths of their absorption lines. The optical design of the MkIV interferometer is based largely on that of the ATMOS instrument, which has flown four times on the Space Shuttle. The first three mirrors in the optical path comprise the suntracker. Two of these mirrors are servo-controlled in order to compensate for any angular motion of the observation platform. The subsequent wedged KBr plates, flats, and cube-corner retro-reflectors comprise a double-passed Michelson interferometer, whose function is to impart a wavelength-dependent modulation to the solar beam. This is achieved by sliding one of the retro-reflectors at a uniform velocity so that the recombining beams interfere with each other. A paraboloid then focusses the solar beam onto infrared detectors, which measure the interferometrically modulated solar signal. Finally, Fourier transformation of the recorded detector outputs yields the solar spectrum. An important advantage of the MkIV Interferometer is that by employing a dichroic to feed two detectors in parallel, a HgCdTe photoconductor for the low frequencies (650-1850 cm-1) and a InSb photodiode for the high frequencies (1850-5650 cm-1), the entire mid-infrared region can be observed simultaneously with good linearity and signal-to-noise ratio. In this region over 30 different gases have identifiable spectral signatures including H2O, O3, N2O, CO, CH4, NO, NO2, HNO3, HNO4, N2O5, H2O2, ClNO3, HOCl, HCl, HF, COF2, CF4, SF6, CF2ClCFCl2, CHF2Cl, CF2Cl2, CFCl3, CCl4, CH3Cl, C2H2, C2H6, OCS, HCN, N2, O2, CO2 and many isotopic variants. The last three named gases, having well known atmospheric abundances, are important in establishing the observation geometry of each spectrum, which otherwise can be a major source of uncertainty. Similarly, from analysis of T-sensitive CO2 lines, the temperature profile can be accurately determined. The simultaneity of the observations of all these gases greatly simplifies the interpretation of the results, which are used for testing computer models of atmospheric transport and chemistry, validation of satellite data, and trend determination.

Although the MkIV can measure gas column abundances at any time during the day, the highest sensitivity to atmospheric trace gases is obtained by observing sunrise or sunset from a balloon. The very long (~ 400 km) atmospheric paths traversed by incoming rays in this observation geometry also make this so-called solar occultation technique insensitive to local contamination.

Instrument Type: 
Aircraft: 
Balloon, DC-8 - AFRC
Point(s) of Contact: 
Subscribe to RSS - O2