Tropospheric O3 columns retrieved from Ozone Monitoring Instrument and Microwave Limb Sounder measurements, CO columns retrieved from Measurements of Pollution in the Troposphere, and tropospheric O3 and CO concentrations retrieved from the Tropospheric Emission Spectrometer from May to August in 2006 are analyzed using the Regional Chemical and Transport Model to investigate the impact of the East Asian summer monsoon on the air quality over China. The observed and simulated migrations of O3 and CO are in good agreement, demonstrating that the summer monsoon significantly affects the air quality over southeastern China, and this influence extends to central East China from June to July. Enhancements of CO and O3 over southeastern China disappear after the onset of the summer monsoon and reemerge in August after the monsoon wanes. The premonsoon high O3 concentrations over southern China are due to photochemical production from pollutant emissions and the O3 transport from the stratosphere. In the summer monsoon season, the O3 concentrations are relatively low over monsoon‐affected regions because of the transport of marine air masses and weak photochemical activity. We find that the monsoon system strongly modulates the pollution problem over a large portion of East China in summer, depending on its strength and tempo‐spatial extension. Model results also suggest that transport from the stratosphere and long‐range transport from East China and South/central Asia all make significant contributions to O3 enhancements over West China. Satellite observations provide valuable information for investigating the monsoon impact on air quality, particularly for the regions with limited in situ measurements.