JPL's WINDRAD system measures brigthness temperatures with multiple polarimetric 17, 19, and 37 GHz Ku- and Ka-band passive microwave radiometers.
Microwave Radiometer
The Microwave Temperature Profiler (MTP) is a passive microwave radiometer, which measures the natural thermal emission from oxygen molecules in the earth’s atmosphere for a selection of elevation angles between zenith and nadir. The current observing frequencies are 55.51, 56.65 and 58.80 GHz. The measured "brightness temperatures" versus elevation angle are converted to air temperature versus altitude using a quasi-Bayesian statistical retrieval procedure. The MTP has no ITAR restrictions, has export compliance classification number EAR99/NLR. An MTP generally consists of two assemblies: a sensor unit (SU), which receives and detects the signal, and a data unit (DU), which controls the SU and records the data. In addition, on some platforms there may be a third element, a real-time analysis computer (RAC), which analyzes the data to produce temperature profiles and other data products in real time. The SU is connected to the DU with power, control, and data cables. In addition the DU has interfaces to the aircraft navigation data bus and the RAC, if one is present. Navigation data is needed so that information such as altitude, pitch and roll are available. Aircraft altitude is needed to perform retrievals (which are altitude dependent), while pitch and roll are needed for controlling the position of a stepper motor which must drive a scanning mirror to predetermined elevation angles. Generally, the feed horn is nearly normal to the flight direction and the scanning mirror is oriented at 45-degrees with respect to receiving feed horn to allow viewing from near nadir to near zenith. At each viewing position a local oscillator (LO) is sequenced through two or more frequencies. Since a double sideband receiver is used, the LO is generally located near the "valley" between two spectral lines, so that the upper and lower sidebands are located near the spectral line peaks to ensure the maximum absorption. This is especially important at high altitudes where "transparency" corrections become important if the lines are too "thin." Because each frequency has a different effective viewing distance, the MTP is able to "see" to different distances by changing frequency. In addition, because the viewing direction is also varied and because the atmospheric opacity is temperature and pressure dependent, different effective viewing distances are also achieved through scanning in elevation . If the scanning is done so that the applicable altitudes (that is, the effective viewing distance times the sine of the elevation angle) at different frequencies and elevation angles are the same, then inter-frequency calibration can also be done, which improves the quality of the retrieved profiles. For a two-frequency radiometer with 10 elevation angles, each 15-second observing cycle produces a set of 20 brightness temperatures, which are converted by a linear retrieval algorithm to a profile of air temperature versus altitude, T(z). Finally, radiometric calibration is performed using the outside air temperature (OAT) and a heated reference target to determine the instrument gain. However, complete calibration of the system to include "window corrections" and other effects, requires tedious analysis and comparison with radiosondes near the aircraft flight path. This is probably the most important single factor contributing to reliable calibration. For stable MTPs, like that on the DC8, such calibrations appear to be reliable for many years. Such analysis is always performed before MTP data are placed on mission archive computers.
The Marshall Airborne Polarimetric Imaging Radiometer (MAPIR) is a dual beam, dual angle polarimetric, scanning L band passive microwave radiometer system developed by the Observing Microwave Emissions for Geophysical Applications (OMEGA) team at MSFC. MAPIR observes naturally-emitted radiation from the ground primarily for remote sensing of land surface brightness temperature from which we can retrieve soil moisture and possibly surface or water temperature and ocean salinity.
MAPIR consists of an electronically steered phased array antenna comprised of 81 receiving patch elements and associated electronics to provide the required beam steering capability. The antenna produces two independent beams that can be individually scanned to any user-defined scan angle. The antenna is connected to four microwave radiometers and a microwave spectrum analyzer. Two radiometers operate over a narrow band (science band) between 1400-1427 MHz. Two other radiometers operate over a wider bandwidth (1350-1450 MHz) and are used for Radio Frequency interference (RFI) surveillance. The outputs of the four radiometers are routed to the digital back end module that digitizes and filters the signal into 16 well isolated spectral sub-bands and computes the first four statistical moments in each sub-band from which the radio brightness temperature and kurtosis (a statistical measure, indicative of RFI) can be computed in post-processing.
MAPIR can operate in two user-selectable modes: Single-Beam Dual (simultaneous) Polarization and Dual (simultaneous) Beam Single Polarization. In the first mode, both beams of the antenna are directed to scan to the same angle, but the radiometers are observing orthogonal polarizations (horizontal and vertical) at the same time. In the second mode, the two antenna beams can be directed to different azimuth and/or angles and the radiometers observe the same polarization at the same time. The instrument is capable of electronic beam steering to one-degree of resolution from 0-40 degrees in elevation and 0-360 degrees azimuth in both beams. MAPIR precision is 0.01K and brightness temperature accuracy is 5 degrees K accuracy over a 10 ms integration interval, but is capable of achieving 0.5K sensitivity over a 1 second integration interval. Near-term improvements to MAPIR will bring that accuracy to 3 K over a 10 ms integration period.
The High Altitude Monolithic Microwave integrated Circuit (MMIC) Sounding Radiometer (HAMSR) is a microwave atmospheric sounder developed by JPL under the NASA Instrument Incubator Program. Operating with 25 spectral channels in 3 bands (50-60 Ghz, 118 Ghz, 183 Ghz), it provides measurements that can be used to infer the 3-D distribution of temperature, water vapor, and cloud liquid water in the atmosphere, even in the presence of clouds. The new UAV-HAMSR with 183GHz LNA receiver reduces noise to less than a 0.1K level improving observations of small-scale water vapor. HAMSR is mounted in payload zone 3 near the nose of the Global Hawk.
HAMSR was designed and built at the Jet Propulsion Laboratory under the NASA Instrument Incubator Program and uses advanced technology to achieve excellent performance in a small package. It was first deployed in the field in the 2001 Fourth Convection and Moisture Experiment (CAMEX-4) - a hurricane field campaign organized jointly by NASA and the Hurricane Research Division (HRD) of NOAA in Florida. HAMSR also participated in the Tropical Cloud Systems and Processes (TCSP) hurricane field campaign in Costa Rica in 2005. In both campaigns HAMSR flew as a payload on the NASA high-altitude ER-2 aircraft. It was also one of the payloads in the 2006 NASA African Monsoon Multidisciplinary Activities (NAMMA) field campaign in Cape Verde - this time using the NASA DC-8. HAMSR provides observations similar to those obtained with microwave sounders currently operating on NASA, NOAA and ESA spacecraft, and this offers an opportunity for valuable comparative analyses.
The Configurable Scanning Submillimeter-wave Instrument/Radiometer (CoSSIR) is an airborne, 16-channel total power imaging radiometer that was primarily developed for the measurement of ice clouds. CoSSIR was first flown in CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and Cirrus Layers – Florida Area Cirrus Experiment) in 2002, followed by CR-AVE (Costa Rica Aura Validation Experiment) in 2006, and TC4 (Tropical Composition, Cloud and Climate Coupling Experiment) in 2007. For CRYSTAL-FACE and CR-AVE, CoSSIR had 15 channels centered at 183±1, 183±3, 183±6.6, 220, 380±.8, 380±1.8, 380±3.3, 380±6.2, 487.25±0.8, 487.25±1.2, 487.25±3.3, and 640 GHz, where the three 487 GHz channels were dual-polarized (vertical and horizontal). For TC4, the 487 GHz channels were removed, 640 GHz was made dual-polarized, and an 874 GHz channel was added.
In 2022, CoSSIR was completely updated with new receivers under funds through the Airborne Instrument Technology Transition (AITT) to improve measurement accuracy and enable CoSSIR to be a stand-alone sensor that no longer shared a scan pedestal with its millimeter-wave sibling, CoSMIR. Frequencies were selected for CoSSIR to optimize snow and cloud ice profiling, and dual-polarization capability was added for all frequencies to provide information on particle size and shape. New channels are centered at 170.5, 177.3, 180.3, 182.3, 325±11.3, 325±3.55, 325±0.9, and 684 GHz. The updated CoSSIR flew for the first time in the 2023 deployment of IMPACTS (Investigation of Microphysics and Precipitation for Atlantic Coast Threatening Snowstorms) and operated nominally for the entire campaign, collecting a wide variety of observations over different types of clouds and precipitation.
All the receivers and radiometer electronics are housed in a small cylindrical scan head (21.5 cm in diameter and 28 cm in length) that is rotated by a two-axis gimbaled mechanism capable of generating a wide variety of scan profiles. Two calibration targets, one maintained at ambient (cold) temperature and another heated to a hot temperature of about 323 K, are closely coupled to the scan head and rotate with it about the azimuth axis. Radiometric signals from each channel are sampled at 10 ms intervals. These signals and housekeeping data are fed to the main computer in an external electronics box.
The AMPR is a total power passive microwave radiometer producing calibrated brightness temperatures (TB) at 10.7, 19.35, 37.1, and 85.5 GHz. These frequencies are sensitive to the emission and scattering of precipitation-size ice, liquid water, and water vapor. The AMPR performs a 90º cross-track data scan perpendicular to the direction of aircraft motion. It processes a linear polarization feed with full vertical polarization at -45º and full horizontal polarization at +45º, with the polarization across the scan mixed as a function of sin2, giving an equal V-H mixture at 0º (aircraft nadir). A full calibration is made every fifth scan using hot and cold blackbodies. From a typical ER-2 flight altitude of ~20 km, surface footprint sizes range from 640 m (85.5 GHz) to 2.8 km (10.7 GHz). All four channels share a common measurement grid with collocated footprint centers, resulting in over-sampling of the low frequency channels with respect to 85.5 GHz.