Associated content: 

Investigating the Understanding of Oxidation Chemistry Using 20 Years of Airborne OH and HO2 Observations

Aerosol/Cloud Particle Impactor/Replicator

Aerosols of size 0.05 µm to 5 µm are collected with Ames wire impactors. This instrument consists of 25 µm, 75 µm and 500 µm diameter palladium or gold wires on ring mounts exposed to air for up to 5 minutes. Smaller diameter wires utilize their higher collection efficiency for small particles. Alternately, the wires can be replaced by Formvar-coated glass rods to collect cloud particles of sizes up to 500 µm. The collectors are brought back to the laboratory for analysis of size, shape and elemental/chemical composition of the collected particles using optical and electron microscopy, energy-dispersive X-ray spectrometry and microchemical reaction spots on substrates sensitized with specific chemicals.

Improved time and space resolution of ice particle collections is achieved by simultaneous sampling with the continuous Formvar replicator. The prime utility of this instrument is to obtain direct measurements of ice and liquid (volatile) particle concentration, size (1µm < D < 500µm) and shape over the period of approximately 2 hours per flight with a spatial resolution on the order of 20 m (at aircraft speed of 200 m/s). This opens the possibility of obtaining horizontal and vertical gradients of these quantities in cirrus clouds and contrails. Analysis of particles replicated on the films takes place by optical microscopy, interference microscopy and electron microscopy. The phases of supercooled or supersaturated solution droplets can be inferred from whether or not particles shatter or splash on impact to give sharp edged fragments or splash characteristics of high impact speed and high Langmuir numbers (high kinetic-to-surface surface energy ratios).

Measurements: 
Aircraft: 
Point(s) of Contact: 

Differential Absorption Lidar

The NASA Langley Airborne Differential Absorption Lidar (DIAL) system uses four lasers to make DIAL O3 profile measurements in the ultraviolet (UV) simultaneously with aerosol profile measurements in the visible and IR. Recent changes incorporate an additional laser and modifications to the receiver system that will provide aerosol backscatter, extinction, and depolarization profile measurements at three wavelengths (UV, visible, and NIR). For SEAC4RS, the DIAL instrument will include for the first time aerosol and cloud measurements implementing the High Spectral Resolution Lidar (HSRL) technique [Hair, 2008]. The modifications include integrating an additional 3-wavelength (355 nm, 532 nm, 1064 nm) narrowband laser and the receiver to make the following measurements; depolarization at all three wavelengths, aerosol/cloud backscatter and extinction at 532 nm via the HSRL technique, and aerosol/cloud backscatter at the 355 and 1064 nm via the standard backscatter lidar technique. Integration of the aerosol extinction profile at 532nm above and below the aircraft also provides aerosol optical depth (AOD) along the aircraft flight track.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Langley (Glen Sachse) DACOM instrument

Nagoya University (Yutaka Kondo) NO and NOy instruement

Guy Ferry and M.J. Mahoney at the AMES Aerosol/JPL Rack

Guy Ferry changing APS modules

Ames Particle Samplers, right wing tip ( Wire impactors)

Pages

Subscribe to RSS - SONEX