Associated content: 

Airborne observations of surface winds, waves and currents from meso to submesoscales

Lenain, L., et al. (2023), Airborne observations of surface winds, waves and currents from meso to submesoscales, Authorea, doi:10.22541/essoar.167336794.45937645/v1 (submitted).

Wind work at the air-sea interface: a modeling study in anticipation of future space missions

Torres, H., et al. (2022), Wind work at the air-sea interface: a modeling study in anticipation of future space missions, Geosci. Model. Dev., doi:10.5194/gmd-15-8041-2022.

S-MODE Open Data Workshop

A Month at Sea: Scientists Prepare to Set Sail for NASA's S-MODE Mission

In early October, the research vessel Bold Horizon set sail from Newport, Oregon, and joined a small fleet of planes, drones, and other high-tech craft chasing the ocean’s shapeshifting physics. NASA’s Sub-Mesoscale Ocean Dynamics Experiment (S-MODE) looks at whirlpools, currents, and other dynamics at the air-sea boundary. The goal is to understand how these dynamics drive the give-and-take of nutrients and energy between the ocean and atmosphere and, ultimately, help shape Earth’s climate.
 

Following the Ocean Fronts

Being part of the NASA S-MODE oceanographic mission was a great experience for me. It was only my second oceanographic mission and my first one on a US research vessel. I learned a lot about how to use the different instruments, interpret their data and about the complexity of the ocean.

Surface Waves from the Bold Horizon's Deck During NASA's S-MODE Experiments

Upon leaving the Breton coastlines after my Ph.D., I started a postdoc at the Colorado School of Mines. After one month in the Colorado mountains, I traveled to Newport, Oregon, to board the Bold Horizon for one month of measurements offshore of San-Francisco for the NASA S-MODE (Sub-Mesoscale Ocean Dynamics Experiment) field campaign.

Life at Sea: Books of the Bold Horizon

ʻAʻohe o kahi nana o luna o ka pali; iho mai a lalo nei; ʻike ke au nui ke au iki, hea lo a he alo. The top of the cliff isn’t the place to look at us; come down here and learn of the big and little currents, face to face (Pukui, 1983, 24).
 

NASA's S-MODE Mission: "Sea-ing" through Rainbow-Colored Glasses

If you asked a random person about the color of the ocean, they would probably tell you that it’s some shade of blue or green. But perhaps that shade of blue looks slightly different to you than it does to the random stranger you’re bothering about the color of the ocean. The way you see color depends on many things: the way an object interacts with incoming light, the color of that incoming light, and even the way your eyes perceive that light.

Cloudy with a Chance for Whirlpools: Ocean Models Guide NASA’s S-MODE Mission

NASA’s S-MODE mission faces quite the challenge: robustly observe, for the first time, ocean features spanning up to about 6.2 miles (10 kilometers) across. Currently, the oceanographic community routinely observes and studies very large ocean features, primarily through space-based instrumentation. These include strong currents such as the Gulf Stream that runs from Florida along the East Coast of the United States all the way to western Europe. Large vortexes are also observed – these being the cyclones and anticyclones you may have seen on your evening weather forecasts.

Where No Map Leads: Reflections from NASA’s S-MODE Mission

It’s like stumbling through a thick forest and breaking out into a glade. A quiet has settled on this piece of sea as the waves calm. You can’t make a good map to get to this place. In the ocean, these glades are always moving, twisting, being born into life by the collision of great currents, then breaking apart, fracturing and sinking beneath the waves. The cold water brought from below by the coastal winds creates a fog that lies heavy on the sea surface, creating this small, calm spot.

Pages

Subscribe to RSS - S-MODE