Organization:
NOAA Earth System Research Laboratory
Business Address:
Chemical Sciences Division
Boulder, CO 80305
United StatesFirst Author Publications:
- Burkholder, J., et al. (2020), Climate Metrics for C1−C4 Hydrofluorocarbons (HFCs), J. Phys. Chem. A, 124, 4793-4800, doi:10.1021/acs.jpca.0c02679.
- Burkholder, J., et al. (2017), The Essential Role for Laboratory Studies in Atmospheric Chemistry, Environ. Sci. Technol., 51, 2519-2528, doi:10.1021/acs.est.6b04947.
- Burkholder, J., R. A. Cox, and A. R. Ravishankara (2015), Atmospheric Degradation of Ozone Depleting Substances, Their Substitutes, and Related Species, Review, 115, 3704−3759, doi:10.1021/cr5006759.
- Burkholder, J., and [a] (2010), Temperature-Dependent Rate Coefficients and Theoretical Calculations for the OH + Cl2O Reaction V, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem, 4060, 4060-4068, doi:10.1002/cphc.201000420.
- Burkholder, J., et al. (1992), Fourier Transform Spectroscopy of the n2 and n3 Bands of HO2, J Mol. Spectrosc., 151, 493.
- Burkholder, J., et al. (1989), Infrared Line Intensity Measurements in the v = 0-1 Band of the ClO Radical, J. Geophys. Res., 94, 225.
Co-Authored Publications:
- Chattopadhyay, A., et al. (2022), UV absorption spectrum of monochlorodimethyl sulfide 9CH3SCH2Cl), J. Photochem. & Photobio., A: Chem., 433, 114214.
- Chattopadhyay, A., et al. (2022), Temperature-dependent rate coefficients for the gas-phase OH + furan-2,5-dione (C4H2O3, maleic anhydride) reaction, doi:10.1002/kin.21387.
- Chattopadhyay, A., et al. (2022), OH Radical and Chlorine Atom Kinetics of Substituted Aromatic Compounds: 4‑chlorobenzotrifluoride (p‑ClC6H4CF3), J. Phys. Chem. A, 126, 5407-5419, doi:10.1021/acs.jpca.2c04455.
- Marshall, P., and J. Burkholder (2022), Comment on "Extremely rapid self-reactions of hydrochlorofluoromethanes and hydrochlorofluoroehtanes and implication in destruction of ozone", Chem. Phys. Lett., 800, 139411.
- Marshall, P., and J. Burkholder (2022), Computational study of the gas-phase reactions of sulfuric acid with OH(2PJ), O(3PJ), Cl(2PJ) and O(1D) radicals, Chem. Phys. Lett., 787, 139203.
- Marshall, P., and J. Burkholder (2022), Comment on "Extremely rapid self-reactions of hydrochlorofluoromethanes and hydrochlorofluoroethanes and implications in destruction of ozone", Chem. Phys. Lett..
- Marshall, P., and J. Burkholder (2022), Computational study of the gas-phase reactions of sulfuric acid with OH(2PJ), O(3P), and O(1D2) radicals, Chem. Phys. Lett..
- Papadimitriou, V. C., ab, and J. Burkholder (2022), rsc.li/pccp Kinetic fall-off behavior for the Cl + Furan-2,5dione (C4H2O3, maleic anhydride) reaction† Aparajeo Chattopadhyay, ab Tomasz Gierczak,‡ab Paul Marshall, abc, Pccp, doi:10.1039/To.
- Papanastasiou, D. K., F. Bernard, and J. Burkholder (2022), ACCESS Metrics & More Article Recommendations * sı Supporting Information Downloaded via NOAA BOULDER LABORATORIES LBRY on September 17, 2020 at 14:49:32 (UTC)., Anal. Chem., 1626, 1626−1637, doi:10.1021/acsearthspacechem.0c00157.
- Spectra, I., et al. (2021), Atmospheric Chemistry of c‑C5HF7 and c‑C5F8: TemperatureDependent OH Reaction Rate Coefficients, Degradation Products,, J. Phys. Chem. A, 125, 1050-1061, doi:10.1021/acs.jpca.0c10561.
- Bernard, F., et al. (2020), Atmospheric lifetimes and global warming potentials of atmospherically T persistent N(CxF2x+1)3, x = 2–4, perfluoroamines, Chemical Physics Letters, 744, 137089, doi:10.1016/j.cplett.2020.137089.
- Brewer, J., et al. (2020), All Rights Reserved. Atmospheric Photolysis of Methyl Ethyl, Diethyl, and Propyl Ethyl Ketones: Temperature‐Dependent UV Absorption Cross Sections, J. Geophys. Res., 124, doi:10.1029/2019JD030391.
- Veres, P., et al. (2020), Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere, Proc. Natl. Acad. Sci., 117, doi:10.1073/pnas.1919344117.
- Baasandorj, M., V. C. Papadimitriou, and J. Burkholder (2019), Rate Coefficients for the Gas-Phase Reaction of (E)- and (Z)‑CF3CFHCFCF3 with the OH Radical and Cl-Atom, J. Phys. Chem. A, 123, 5051-5060, doi:10.1021/acs.jpca.9b03095.
- Papanastasiou, D. K., et al. (2019), N(4S3/2) reaction with NO and NO2: Temperature dependent rate T coefficients and O(3P) product yield, Chemical Physics Letters, 728, 102-108, doi:10.1016/j.cplett.2019.04.081.
- Vollmer, M. K., et al. (2019), Abundances, emissions, and loss processes of the long-lived and potent greenhouse gas octafluorooxolane (octafluorotetrahydrofuran, c-C4F8O) in the atmosphere, Atmos. Chem. Phys., 19, 3481-3492, doi:10.5194/acp-19-3481-2019.
- Baasandorj, M., et al. (2018), Rate Coefficient Measurements and Theoretical Analysis of the OH + (E)‑CF3CHHCHCF3 Reaction, J. Phys. Chem. A, 122, 4635-4646, doi:10.1021/acs.jpca.8b02771.
- Bernard, F., et al. (2018), Infrared absorption spectra of N(Cx F2 x +1 )3 , x = 2–5 perfluoroamines, J. Quant. Spectrosc. Radiat. Transfer, 211, 166-171, doi:10.1016/j.jqsrt.2018.02.039.
- Bernard, F., et al. (2018), Temperature Dependent Rate Coefficients for the Gas-Phase Reaction of the OH Radical with Linear (L2, L3) and Cyclic (D3, D4) Permethylsiloxanes, J. Phys. Chem. A, 122, 4252-4264, doi:10.1021/acs.jpca.8b01908.
- Papanastasiou, D. K., et al. (2018), Global warming potential estimates for the C1–C3 hydrochlorofluorocarbons (HCFCs) included in the Kigali Amendment to the Montreal Protocol, Atmos. Chem. Phys., 18, 6317-6330, doi:10.5194/acp-18-6317-2018.
- Bernard, F., et al. (2017), Infrared absorption spectra of linear (L2 –L5 ) and cyclic (D3 –D6 ) permethylsiloxanes, J. Quant. Spectrosc. Radiat. Transfer, 202, 247-254, doi:10.1016/j.jqsrt.2017.08.006.
- Liang, Q., et al. (2017), Deriving Global OH Abundance and Atmospheric Lifetimes for Long-Lived Gases: A Search for CH3CCl3 Alternatives, J. Geophys. Res., 122, 11,914-11,933, doi:10.1002/2017JD026926.
- Davis, M. E., et al. (2016), UV and infrared absorption spectra, atmospheric lifetimes, and ozone depletion and global warming potentials for CCl2FCCl2F (CFC-112), CCl3CClF2 (CFC-112a), CCl3CF3 (CFC-113a), and CCl2FCF3 (CFC-114a), Atmos. Chem. Phys., 16, 8043-8052, doi:10.5194/acp-16-8043-2016.
- Papadimitriou, V. C., and J. Burkholder (2016), OH Radical Reaction Rate Coefficients, Infrared Spectrum, and Global Warming Potential of (CF3)2CFCHHCHF (HFO-1438ezy(E)), J. Phys. Chem. A, 120, 6618-6628, doi:10.1021/acs.jpca.6b06096.
- Bernard, F., et al. (2015), CBrF3 (Halon-1301): UV absorption spectrum between 210 and 320 K, atmospheric lifetime, and ozone depletion potential, Journal of Photochemistry and Photobiology A: Chemistry, 306, 13-20, doi:10.1016/j.jphotochem.2015.03.012.
- Fleming, E. L., et al. (2015), The impact of current CH4 and N2O atmospheric loss process uncertainties on calculated ozone abundances and trends, J. Geophys. Res., 120, 5267-5293, doi:10.1002/2014JD022067.
- Jubb, A. M., et al. (2015), An atmospheric photochemical source of the persistent greenhouse gas CF4, Geophys. Res. Lett., 42, doi:10.1002/2015GL066193.
- McGillen, M. R., and J. Burkholder (2015), Gas-phase photodissociation of CF3C(O)Cl between 193 and 280 nm, Chemical Physics Letters, 639, 189-194, doi:10.1016/j.cplett.2015.09.024.
- McGillen, M. R., et al. (2015), HCFC-133a (CF3CH2Cl): OH rate coefficient, UV and infrared absorption spectra, and atmospheric implications, Geophys. Res. Lett., 42, 6098-6105, doi:10.1002/2015GL064939.
- Papadimitriou, V. C., et al. (2015), CH3CO + O2 + M (M = He, N2) Reaction Rate Coefficient Measurements and Implications for the OH Radical Product Yield, J. Phys. Chem. A, 119, 7481-7497, doi:10.1021/acs.jpca.5b00762.
- Sauer, F., et al. (2015), Temperature Dependence of the Cl Atom Reaction with Deuterated Methanes, J. Phys. Chem. A, 119, 4396-4407, doi:10.1021/jp508721h.
- Gierczak, T., M. Baasandorj, and J. Burkholder (2014), OH + (E)- and (Z)‑1-Chloro-3,3,3-trifluoropropene‑1 (CF3CHHCHCl) Reaction Rate Coefficients: Stereoisomer-Dependent Reactivity, J. Phys. Chem. A, 118, 11015-11025, doi:10.1021/jp509127h.
- Jubb, A. M., et al. (2014), Methyl-Perfluoroheptene-Ethers (CH3OC7F13): Measured OH Radical Reaction Rate Coefficients for Several Isomers and Enantiomers and Their Atmospheric Lifetimes and Global Warming Potentials, Environ. Sci. Technol., 48, 4954-4962, doi:10.1021/es500888v.
- Papanastasiou, D. K., S. A. McKeen, and J. Burkholder (2014), The very short-lived ozone depleting substance CHBr3 (bromoform): revised UV absorption spectrum, atmospheric lifetime and ozone depletion potential, Atmos. Chem. Phys., 14, 3017-3025, doi:10.5194/acp-14-3017-2014.
- Baasandorj, M., et al. (2013), O(1D) Kinetic Study of Key Ozone Depleting Substances and Greenhouse Gases, J. Phys. Chem. A, 117, 2434-2445, doi:10.1021/jp312781c.
- McGillen, M. R., et al. (2013), CFCl3 (CFC-11): UV absorption spectrum temperature dependence measurements and the impact on its atmospheric lifetime and uncertainty, Geophys. Res. Lett., 40, 1-5, doi:10.1002/grl.50915.
- Papadimitriou, V. C., et al. (2013), 1,2-Dichlorohexafluoro-cyclobutane (1,2-c‑C4F6Cl2, R‑316c) a Potent Ozone Depleting Substance and Greenhouse Gas: Atmospheric Loss Processes, Lifetimes, and Ozone Depletion and Global Warming Potentials for the (E) and (Z) Stereoisomers, J. Phys. Chem. A, 117, 11049-11065, doi:10.1021/jp407823k.
- Papadimitriou, V. C., et al. (2013), NF3: UV absorption spectrum temperature dependence and the atmospheric and climate forcing implications, Geophys. Res. Lett., 40, 440-445, doi:10.1002/grl.50120.
- Papanastasiou, D. K., et al. (2013), Revised UV absorption spectra, ozone depletion potentials, and global warming potentials for the ozone-depleting substances CF2Br2, CF2ClBr, and CF2BrCF2Br, Geophys. Res. Lett., 40, 464-469, doi:10.1002/GRL.50121.
- Baasandorj, M., B. D. Hall, and J. Burkholder (2012), Rate coefficients for the reaction of O(1D) with the atmospherically long-lived greenhouse gases NF3, SF5CF3, CHF3, C2F6, c-C4F8, n-C5F12, and n-C6F14, Atmos. Chem. Phys., 12, 11753-11764, doi:10.5194/acp-12-11753-2012.
- Ghosh, B., et al. (2012), Nitryl Chloride (ClNO2): UV/Vis Absorption Spectrum between 210 and 296 K and O(3P) Quantum Yield at 193 and 248 nm, J. Phys. Chem. A, 116, 5796-5805, doi:10.1021/jp207389y.
- Talukdar, R. K., et al. (2012), Heterogeneous Interaction of N2O5 with HCl Doped H2SO4 under Stratospheric Conditions: ClNO2 and Cl2 Yields, J. Phys. Chem. A, 116, 6003-6014, doi:10.1021/jp210960z.
- Papadimitriou, V. C., et al. (2011), Atmospheric Chemistry of CF3CFdCH2 and (Z)-CF3CFdCHF: Cl and NO3 Rate Coefficients, Cl Reaction Product Yields, and Thermochemical Calculations, J. Phys. Chem. A, 115, 167-181, doi:10.1021/jp110021u.
- Thornberry, T., et al. (2011), Laboratory evaluation of the effect of nitric acid uptake on frost point hygrometer performance, Atmos. Meas. Tech., 4, 289-296, doi:10.5194/amt-4-289-2011.
- Baasandorj, M., et al. (2010), Rate Coefficients for the Gas-Phase Reaction of the Hydroxyl Radical with CH2dCHF and CH2dCF2, J. Phys. Chem. A, 114, 4619-4633, doi:10.1021/jp100527z.
- Carlon, N. R., et al. (2010), UV absorption cross sections of nitrous oxide (N2O) and carbon tetrachloride (CCl4) between 210 and 350 K and the atmospheric implications, Atmos. Chem. Phys., 10, 6137-6149, doi:10.5194/acp-10-6137-2010.
- Feierabend, K. J., D. K. Papanastasiou, and J. Burkholder (2010), ClO Radical Yields in the Reaction of O(1D) with Cl2, HCl, Chloromethanes, and Chlorofluoromethanes, J. Phys. Chem. A, 114, 12052-12061, doi:10.1021/jp107761t.
- Gierczak, T., et al. (2010), Kinetic study of the reaction of the acetyl radical, CH3CO, with O3 using cavity ring-down spectroscopy, Chemical Physics Letters, 484, 160-164, doi:10.1016/j.cplett.2009.11.037.
- Feierabend, K. J., et al. (2009), HCO Quantum Yields in the Photolysis of HC(O)C(O)H (Glyoxal) between 290 and 420 nm, J. Phys. Chem. A, 113, 7784-7794, doi:10.1021/jp9033003.
- Gierczak, T., et al. (2009), Rate Coefficients for the Reaction of the Acetyl Radical, CH3CO, with Cl2 between 253 and 384 K, Int. J. Chem. Kinet., 41, 543-553, doi:10.1002/kin.20430.
- Papanastasiou, D. K., et al. (2009), UV Absorption Spectrum of the ClO Dimer (Cl2O2) between 200 and 420 nm, J. Phys. Chem. A, 113, 13711-13726, doi:10.1021/jp9065345.
- Rajakumar, B., et al. (2008), The CH3CO quantum yield in the 248 nm photolysis of acetone, methyl ethyl ketone, and biacetyl, J. Photochem. Photobio. A: Chem., 199, 336-344, doi:10.1016/j.jphotochem.2008.06.015.
- Rajakumar, B., et al. (2008), The CH3 CO quantum yield in the 248 nm photolysis of acetone, methyl ethyl ketone, and biacetyl, Journal of Photochemistry and Photobiology A: Chemistry, 199, 336-344, doi:10.1016/j.jphotochem.2008.06.015.
- Rajakumar, B., et al. (2007), Visible Absorption Spectrum of the CH3CO Radical, J. Phys. Chem. A, 111, 8950-8958, doi:10.1021/jp073339h.
- Hammer, P. D., et al. (1992), Fourier Transofrm Spectroscopy of the n2 and n3 Bands of HO2, J Mol. Spectrosc., 151, 493.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.