Vapor In-cloud Profiling Radar (VIPR), provides high-vertical-resolution water vapor soundings within the PBL. Importantly, VIPR implements for the first time the differential absorption radar (DAR) approach to provide sounding within the cloudy and precipitating volumes.
Twin Otter
The NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) has been in operation since 1989 acquiring contiguous spectral measurements between 380 and 2510 nm for use by a range of terrestrial ecology science investigations related to: (1) pattern and spatial distribution of ecosystems and their components, (2) ecosystem function, physiology and seasonal activity, (3) biogeochemical cycles, (3) changes in disturbance activity, and (4) ecosystems and human health. While AVIRIS continue to make unique and significant science contributions, such as its deployment to the Gulf of Louisiana in May 2010 for the assessment of the amount of oil spilled by the offshore well, the need for a new sensor to share AVIRIS’ workload and to eventually replace AVIRIS is inevitable. Indeed, since the late summer of 2009 a new NASA Earth Science airborne sensor called the Next Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRISng) is being developed by JPL through the funding support from the American Recovery and Reinvestment Act (ARRA). The technical and programmatic oversights of the AVIRISng development is provided by NASA’s Earth Science Technology Office (ESTO).
Similar to its predecessor, the AVIRIS-NG is being designed to be compatible with a broad array of possible aircraft platforms, such as NASA’s ER-2 jet, the Twin Otter turboprop, B200 King Air, and NASA’s Gulfstream III and V.
AVIRIS is the second in a series of imaging spectrometer instruments developed at the Jet Propulsion Laboratory (JPL) for earth remote sensing. It is a unique optical sensor that delivers calibrated images of the upwelling spectral radiance in 224 contiguous spectral channels (bands) with wavelengths from 380 to 2510 nanometers. It uses scanning optics and four spectrometers to image a 677 pixel swath simultaneously in all 224 bands. AVIRIS has flown in North America, Europe, and portions of South America.
The AVIRIS sensor collects data that can be used for characterization of the Earth's surface and atmosphere from geometrically coherent spectroradiometric measurements. This data can be applied to studies in the fields of oceanography, environmental science, snow hydrology, geology, volcanology, soil and land management, atmospheric and aerosol studies, agriculture, and limnology. Applications under development include the assessment and monitoring of environmental hazards such as toxic waste, oil spills, and land/air/water pollution. With proper calibration and correction for atmospheric effects, the measurements can be converted to ground reflectance data which can then be used for quantitative characterization of surface features.