Synonyms: 
DC8
DC-8
NASA DC8
NASA DC-8 -AFRC
Associated content: 

Flight path of science mission #3

Sea ice in the Bellingshausen Sea seen from the DC-8 on today’s mission

Polarized Imaging Nephelometer

The Polarized Imaging Nephelometer is an in situ instrument designed and built at the Laboratory for Aerosols, Clouds and Optics (LACO) at the University of Maryland Baltimore County for the measurement of components of the aerosol phase matrix in high angular resolution between 2 to 178 deg scattering angles. The measured phase matrix provides extensive characterization of the scattering properties of the studied aerosols allowing for a very comprehensive set of aerosol scattering parameters. These measurements are essential for the validation of the new generation of aerosol remote sensors like the APS polarimeter in the Glory satellite, and for the construction of accurate models of real aerosol particles, specially the non-spherical ones.

Measurements: 
Point(s) of Contact: 

Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research

4STAR (Spectrometers for Sky-Scanning Sun-Tracking Atmospheric Research; Dunagan et al., 2013) is an airborne sun-sky spectrophotometer measuring direct solar beam transmittance (i.e., 4STAR determines direct solar beam transmission by detecting direct solar irradiance) and narrow field-of-view sky radiance to retrieve and remotely sense column-integrated and, in some cases, vertically resolved information on aerosols, clouds, and trace gases. The 4STAR team is a world leader in airborne sun-sky photometry, building on 4STAR’s predecessor instrument, AATS-14 (the NASA Ames Airborne Tracking Sun photometers; Matsumoto et al., 1987; Russell et al. 1999, and cited in more than 100 publication) and greatly expanding aerosol observations from the ground-based AERONET network of sun-sky photometers (Holben et al., 1998) and the Pandora network of ground-based direct-sun and sky spectrometer (e.g, Herman et al., 2009).

4STAR is used to quantify the attenuated solar light (from 350 to 1650 nm) and retrieve properties of various atmospheric constituents: spectral Aerosol Optical Depth (AOD) from ultraviolet to the shortwave infrared (e.g., LeBlanc et al., 2020, Shinozuka et al., 2013); aerosol intensive properties - Single Scattering Albedo (SSA; e.g., Pistone et al., 2019), asymmetry parameter, scattering phase function, absorption angstrom exponent, size distribution, and index of refraction; various column trace gas components (NO2, Ozone, Water Vapor; e.g., Segal-Rosenheimer et al., 2014, with potential for SO2 and CH2O); and cloud optical depth, effective radius and thermodynamic phase (e.g., LeBlanc et al., 2015).

Some examples of the science questions that 4STAR have pursued in the past and will continue to address:

  • What is the Direct Aerosol Radiative Effect on climate and its uncertainty? (1)
  • How much light is absorbed by aerosol emitted through biomass burning? (1)
  • How does heating of the atmosphere by absorbing aerosol impact large scale climate and weather patterns? (1)
  • How does aerosol spatial consistency of extensive and intensive properties compare? (2)
  • How does the presence of aerosol impact Earth’s radiative transfer, with co-located high concentration of trace gas? (3, 5)
  • What is the impact of air quality from long-range transport of both aerosol particulates and column NO2 and Ozone, and their evolution? (3, 6)
  • What are the governing properties and spatial patterns of local and transported aerosol? (1)
  • How are cloud properties impacted near the sea-ice edge? (4)
  • In heterogeneous environments where clouds and aerosols are present, how much solar radiation is impacted by 3D radiative transfer? And how does that impact the aerosol properties? (5)

(1) ORACLES: Zuidema et al., doi:10.1175/BAMS-D-15-00082.1., 2016; LeBlanc et al., doi:10.5194/acp-20-1565-2020, 2020; Pistone et al., https://doi.org/10.5194/acp-2019-142, 2019;Cochrane et al., https://doi.org/10.5194/amt-12-6505-2019, 2019; Shinozuka et al., https://doi.org/10.5194/acp-20-11275-2020, 2020; Shinozuka et al., https://doi.org/10.5194/acp-20-11491-2020, 2020
(2) KORUS-AQ:  LeBlanc et al., doi:
https://doi.org/10.5194/acp-22-11275-2022, 2022

(3) KORUS-AQ: Herman et al., doi:10.5194/amt-11-4583-2018, 2018
(4) ARISE: Smith et al.,
https://doi.org/10.1175/BAMS-D-14-00277.1, 2017; Segal-Rosenheimer et al., doi:10.1029/2018JD028349, 2018
(5) SEAC4RS: Song et al., doi: 10.5194/acp-16-13791-2016, 2016; Toon et al., https://doi.org/10.1002/2015JD024297, 2016
(6
) TCAP: Shinozuka et al., doi:10.1002/2013JD020596, 2013; Segal-Rosenheimer et al., doi:10.1002/2013JD020884, 2014

Instrument Type: 
Point(s) of Contact: 

Advanced Vertical Atmospheric Profiling System

The Advanced Vertical Atmospheric Profiling System (AVAPS) is the dropsonde system for the Global Hawk. The Global Hawk dropsonde is a miniaturized version of standard RD-93 dropsondes based largely on recent MIST driftsondes deployed from balloons. The dropsonde provides vertical profiles of pressure, temperature, humidity, and winds. Data from these sondes are transmitted in near real-time via Iridium or Ku-band satellite to the ground-station, where additional processing will be performed for transmission of the data via the Global Telecommunications System (GTS) for research and operational use. The dispenser is located in zone 61 in the Global Hawk tail and is capable of releasing up to 88 sondes in a single flight.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

In Situ Airborne Formaldehyde

The NASA GSFC In Situ Airborne Formaldehyde (ISAF) instrument measures formaldehyde (CH2O) on both pressurized and unpressurized (high-altitude) aircraft. Using laser induced fluorescence (LIF), ISAF possesses the high sensitivity, fast time response, and dynamic range needed to observe CH2O throughout the troposphere and lower stratosphere, where concentrations can range from 10 pptv to hundreds of ppbv.

Formaldehyde is produced via the oxidation of hydrocarbons, notably methane (a ubiquitous greenhouse gas) and isoprene (the primary hydrocarbon emitted by vegetation). Observations of CH2O can thus provide information on many atmospheric processes, including:
 - Convective transport of air from the surface to the upper troposphere
 - Emissions of reactive hydrocarbons from cities, forests, and fires
 - Atmospheric oxidizing capacity, which relates to formation of ozone and destruction of methane
In situ observations of CH2O are also crucial for validating retrievals from satellite instruments, such as OMI, TROPOMI, and TEMPO.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

In-Situ Measurements of Aerosol Optical Properties

Three instruments, a cavity ringdown (CRD) aerosol extinction spectrometer, a photoacoustic absorption spectrometer (PAS), and an ultra-high sensitivity aerosol size spectrometer (UHSAS) comprise the AOP package. The AOP package provides multi‐wavelength, multi-RH aerosol extinction and absorption measurements with fast response and excellent accuracy and stability on aircraft platforms. The instruments will also characterize the optics of black carbon (BC) mixing state, brown carbon, and water uptake of aerosol. Aerosol asymmetry parameter, needed for radiative transfer modeling, will be calculated from dry and humidified particle size distributions.

Instrument Type: 
Point(s) of Contact: 

NOAA Nitrogen Oxides and Ozone

The NOAA NOyO3 4-channel chemiluminescence (CL) instrument will provide in-situ measurements of nitric oxide (NO), nitrogen dioxide (NO2), total reactive nitrogen oxides (NOy), and ozone (O3) on the NASA DC-8 during the FIREX-AQ project. Different versions of this instrument have flown on the NASA DC-8 and NOAA WP-3D research aircraft on field projects since 1995. It provides fast-response, specific, high precision, and calibrated measurements of nitrogen oxides and ozone at a spatial resolution of better than 100m at typical DC-8 research flight speeds. Detection is based on the gas-phase CL reaction of NO with O3 at low pressure, resulting in photoemission from electronically excited NO2. Photons are detected and quantified using pulse counting techniques, providing ~5 to 10 part-per-trillion by volume (pptv) precision at 1 Hz data rates. One detector of the integrated 4-channel instrument is used to measure ambient NO directly, a second detector is equipped with a UV-LED converter to photodissociate ambient NO2 to NO, and a third detector is equipped with a heated gold catalyst to reduce ambient NOy species to NO. Reagent ozone is added to these sample streams to drive the CL reactions with NO. Ambient O3 is detected in the fourth channel by adding reagent NO.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Pages

Subscribe to RSS - DC-8 - AFRC