Synonyms: 
Convair-580
NRC Convair 580
Convair 580

4STAR integration at NRC

4STAR on the NRC's Convair 580 with Sam, Konstantin, and Roy posing in front

Cloud Absorption Radiometer

CAR is a multi-wavelength scanning radiometer for determining albedo of clouds in the visible and near-infrared and measuring the angular distribution of scattered radiation and bidirectional reflectance of various surface types. It acquires imagery of cloud and Earth surface features.

For details, visit: https://car.gsfc.nasa.gov

Instrument Type: 
Measurements: 
Aircraft: 
J-31, P-3 Orion - WFF, Convair 580 NRC
Instrument Team: 

Airborne Multichannel Microwave Radiometer

The Airborne Multichannel Microwave Radiometer (AMMR) measures thermal microwave emission (in degrees Kelvin of brightness temperature) from surface and atmosphere. The up-looking radiometer at 21 and 37 GHz is a component of AMMR that was developed in the 1970's for precipitation measurements from an aircraft. The entire AMMR assembly covers a frequency range of 10-92 GHz. The 21/37 GHz unit has been flown in many types of aircraft during the past three decades in various field campaigns. It was refurbished during the year 2000 and is ready for flight again.

The fixed-beam Dicke radiometer has a beam width of about 6 degrees and is currently programmed with radiometric output every second. The temperature sensitivity is < 0.5 K, and the calibration accuracy is about ±4 K. The calibration is performed on the ground by viewing targets of known brightness (e.g., sky and absorber with known brightness temperature). The unit can be installed in one of the windows of the NASA P-3 aircraft so that it views at an angle of about 15º from zenith. Thus, it is necessary to spiral the aircraft gradually down to region below the freezing level in order to make measurements effectively. Ideally, the aircraft descends at the rate of about 1 km per 5 minutes. The system requires a bottle of N2 gas to keep the wave guides dry during the in-flight operation.

Instrument Type: 
Measurements: 
Aircraft: 
Convair 580 NRC, DC-8 - AFRC, P-3 Orion - WFF
Instrument Team: 

14-channel NASA Ames Airborne Tracking Sunphotometer

AATS-14 measures direct solar beam transmission at 14 wavelengths between 354 and 2139 nm in narrow channels with bandwidths between 2 and 5.6 nm for the wavelengths less than 1640 nm and 17.3 nm for the 2139 nm channel. The transmission measurements at all channels except 940 nm are used to retrieve spectra of aerosol optical depth (AOD). In addition, the transmission at 940 nm and surrounding channels is used to derive columnar water vapor (CWV) [Livingston et al., 2008]. Methods for AATS-14 data reduction, calibration, and error analysis have been described extensively, for example, by Russell et al. [2007] and Shinozuka et al. [2011]. AATS-14 measurements of spectral AOD and CWV obtained during aircraft vertical profiles can be differentiated to determine corresponding vertical profiles of spectral aerosol extinction and water vapor density. Such measurements have been used extensively in the characterization of the horizontal and vertical distribution of aerosol optical properties and in the validation of satellite aerosol sensors. For example, in the Aerosol Characterization Experiment-Asia (ACE-Asia), AATS measurements were used for closure (consistency) studies with in situ aerosol samplers aboard the NCAR C-130 and the CIRPAS Twin-Otter aircraft, and with ground-based lidar systems. In ACE-Asia, CLAMS (Chesapeake Lighthouse & Aircraft Measurements for Satellites, 2001), the Extended-MODIS-λ Validation Experiment (EVE), INTEX-A, INTEX-B, and ARCTAS, AATS results have been used in the validation of satellite sensors aboard various EOS platforms, providing important aerosol information used in the improvement of retrieval algorithms for the MISR and MODIS sensors among others.

Instrument Type: 
Measurements: 
Aircraft: 
Instrument Team: 
Subscribe to RSS - Convair 580 NRC