Organization
University of Maryland, Baltimore County
Email
Business Phone
Work
(410) 455-6315
Business Address
Physics Department
Baltimore County
Baltimore, MD 21250
United States
First Author Publications
-
Zhang, Z., et al. (2017), Intercomparisons of marine boundary layer cloud properties from the ARM CAP-MBL campaign and two MODIS cloud products, J. Geophys. Res., 122, doi:10.1002/2016JD025763.
-
Zhang, Z., et al. (2016), A framework based on 2-D Taylor expansion for quantifying the impacts of subpixel reflectance variance and covariance on cloud optical thickness and effective radius retrievals based on the bispectral method, J. Geophys. Res., 121, 7007-7025, doi:10.1002/2016JD024837.
-
Zhang, Z., et al. (2014), A novel method for estimating shortwave direct radiative effect of above-cloud aerosols using CALIOP and MODIS data, Atmos. Meas. Tech., 7, 1777-1789, doi:10.5194/amt-7-1777-2014.
-
Zhang, Z., et al. (2012), Effects of cloud horizontal inhomogeneity and drizzle on remote sensing of cloud droplet effective radius: Case studies based on large-eddy simulations, J. Geophys. Res., 117, D19208, doi:10.1029/2012JD017655.
-
Zhang, Z., et al. (2009), Influence of ice particle model on satellite ice cloud retrieval: lessons learned from MODIS and POLDER cloud product comparison, Atmos. Chem. Phys., 9, 7115-7129, doi:10.5194/acp-9-7115-2009.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Song, Q., et al. (2023), Size-resolved dust direct radiative effect efficiency derived from satellite observations, Atmos. Chem. Phys., doi:10.5194/acp-22-13115-2022.
-
Zheng, J., et al. (2022), The thermal infrared optical depth of mineral dust retrieved from integrated CALIOP and IIR observations, Remote Sensing of Environment, 270, 112841, doi:10.1016/j.rse.2021.112841.
-
Song, Q., et al. (2021), Global dust optical depth climatology derived from CALIOP and MODIS aerosol retrievals on decadal timescales: regional and interannual variability, Atmos. Chem. Phys., 21, 13369-13395, doi:10.5194/acp-21-13369-2021.
-
Yu, H., et al. (2021), Observation and modeling of the historic “Godzilla” African dust intrusion into the Caribbean Basin and the southern US in June 2020, Atmos. Chem. Phys., 21, 12359-12383, doi:10.5194/acp-21-12359-2021.
-
Alexandrov, M.D., et al. (2020), Vertical profiles of droplet size distributions derived from cloud-side T observations by the research scanning polarimeter: Tests on simulated data ⁎, Atmos. Res., 239, 104924, doi:10.1016/j.atmosres.2020.104924.
-
Yu, H., et al. (2019), Estimates of African Dust Deposition Along the Trans‐ Atlantic Transit Using the Decadelong Record of Aerosol Measurements from CALIOP, MODIS, MISR, and IASI, J. Geophys. Res., 124, 7975-7996, doi:10.1029/2019JD030574.
-
Miller, D.J., et al. (2018), Comparisons of bispectral and polarimetric retrievals of marine boundary layer cloud microphysics: case studies using a LES–satellite retrieval simulator, Atmos. Meas. Tech., 11, 3689-3715, doi:10.5194/amt-11-3689-2018.
-
Song, Q., et al. (2018), Net radiative effects of dust in the tropical North Atlantic based on integrated satellite observations and in situ measurements, Atmos. Chem. Phys., 18, 11303-11322, doi:10.5194/acp-18-11303-2018.
-
Werner, F., et al. (2018), Improving cloud optical property retrievals for partly cloudy pixels using coincident higher-resolution single band measurements: A feasibility study using ASTER observations, J. Geophys. Res., 123, doi:10.1029/2018JD028902.
-
Platnick, S.E., et al. (2017), The MODIS Cloud Optical and Microphysical Products: Collection 6 Updates and Examples From Terra and Aqua, IEEE Trans. Geosci. Remote Sens., 55, 502-525, doi:10.1109/TGRS.2016.2610522.
-
Rajapakshe, C., et al. (2017), Seasonally transported aerosol layers over southeast Atlantic are closer to underlying clouds than previously reported, Geophys. Res. Lett., 44, 5818-5825, doi:10.1002/2017GL073559.
-
Miller, D., et al. (2016), The impact of cloud vertical profile on liquid water path retrieval based on the bispectral method: A theoretical study based on large-eddy simulations of shallow marine boundary layer clouds, J. Geophys. Res., 121, 4122-4141, doi:10.1002/2015JD024322.
-
Werner, F., et al. (2016), Marine boundary layer cloud property retrievals from high-resolution ASTER observations: case studies and comparison with Terra MODIS, Atmos. Meas. Tech., 9, 5869-5894, doi:10.5194/amt-9-5869-2016.
-
Cho, H., et al. (2015), Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans, J. Geophys. Res., 120, doi:10.1002/2015JD023161.
-
Huang, J., et al. (2015), CALIPSO inferred most probable heights of global dust and smoke layers, J. Geophys. Res., 120, doi:10.1002/2014JD022898.
-
Yu, H., et al. (2015), The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations, Geophys. Res. Lett., 42, 1984-1991, doi:10.1002/2015GL063040.
-
Wang, C., et al. (2013), Retrieval of Ice Cloud Properties from AIRS and MODIS Observations Based on a Fast High-Spectral-Resolution Radiative Transfer Model, J. Appl. Meteor. Climat., 52, 710-726, doi:10.1175/JAMC-D-12-020.1.
-
Yu, H., and Z. Zhang (2013), New Directions: Emerging satellite observations of above-cloud aerosols and direct radiative forcingq, Atmos. Environ., 72, 36-40, doi:10.1016/j.atmosenv.2013.02.017.
-
Baum, B.A., et al. (2011), Improvements in Shortwave Bulk Scattering and Absorption Models for the Remote Sensing of Ice Clouds, J. Appl. Meteor. Climat., 50, 1037-1056, doi:10.1175/2010JAMC2608.1.
-
Yang, P., et al. (2008), Effect of Cavities on the Optical Properties of Bullet Rosettes: Implications for Active and Passive Remote Sensing of Ice Cloud Properties, J. Appl. Meteor. Climat., 47, 2311-2330, doi:10.1175/2008JAMC1905.1.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.