Organization:
Johns Hopkins University Applied Physics Laboratory
Business Address:
Department of Earth and Planetary Sciences
3400 North Charles Street
Baltimore, MD 21218
United StatesCo-Authored Publications:
- Tweedy, O. V., et al. (2017), Hemispheric differences in the annual cycle of tropical lower stratosphere transport and tracers, J. Geophys. Res., 122, 7183-7199, doi:10.1002/2017JD026482.
- Harris, N., et al. (2015), Past changes in the vertical distribution of ozone – Part 3: Analysis and interpretation of trends, Atmos. Chem. Phys., 15, 9965-9982, doi:10.5194/acp-15-9965-2015.
- Douglass, A., et al. (2014), Understanding differences in chemistry climate model projections of stratospheric ozone, J. Geophys. Res., 119, 4922-4939, doi:10.1002/2013JD021159.
- Douglass, A., et al. (2012), Understanding differences in upper stratospheric ozone response to changes in chlorine and temperature as computed using CCMVal-2 models, J. Geophys. Res., 117, D16306, doi:10.1029/2012JD017483.
- Li, F., et al. (2012), Seasonal variations of stratospheric age spectra in the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM), J. Geophys. Res., 117, D05134, doi:10.1029/2011JD016877.
- Swartz, W. H., et al. (2012), Middle atmosphere response to different descriptions of the 11-yr solar cycle in spectral irradiance in a chemistry-climate model, Atmos. Chem. Phys., 12, 5937-5948, doi:10.5194/acp-12-5937-2012.
- Fleming, E. L., et al. (2011), A model study of the impact of source gas changes on the stratosphere for 1850–2100, Atmos. Chem. Phys., 11, 8515-8541, doi:10.5194/acp-11-8515-2011.
- Strahan, S., et al. (2011), Using transport diagnostics to understand chemistry climate model ozone simulations, J. Geophys. Res., 116, D17302, doi:10.1029/2010JD015360.
- Kawa, S. R., et al. (2009), Sensitivity of polar stratospheric ozone loss to uncertainties in chemical reaction kinetics, Atmos. Chem. Phys., 9, 8651-8660, doi:10.5194/acp-9-8651-2009.
- Liang, Q., et al. (2009), The governing processes and timescales of stratosphere-to-troposphere transport and its contribution to ozone in the Arctic troposphere, Atmos. Chem. Phys., 9, 3011-3025, doi:10.5194/acp-9-3011-2009.
- Newman, P., et al. (2009), What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated?, Atmos. Chem. Phys., 9, 2113-2128, doi:10.5194/acp-9-2113-2009.
- Douglass, A., et al. (2008), Relationship of loss, mean age of air and the distribution of CFCs to stratospheric circulation and implications for atmospheric lifetimes, J. Geophys. Res., 113, D14309, doi:10.1029/2007JD009575.
- Schoeberl, M. R., et al. (2008), Comparison of lower stratospheric tropical mean vertical velocities, J. Geophys. Res., 113, D24109, doi:10.1029/2008JD010221.
- Douglass, A., et al. (2006), Sensitivity of Arctic ozone loss to polar stratospheric cloud volume and chlorine and bromine loading in a chemistry and transport model, Geophys. Res. Lett., 33, L17809, doi:10.1029/2006GL026492.
- Kawa, S. R., et al. (2005), Fall vortex ozone as a predictor of springtime total ozone at high northern latitudes, Atmos. Chem. Phys., 5, 1655-1663, doi:10.5194/acp-5-1655-2005.
- Thomas, B. C., et al. (2005), Terrestrial Ozone Depletion due to a Milky Way Gamma-Ray Burst, The Astrophysical Journal, 622, L153-L156.
- Thomas, B. C., et al. (2005), Gamma-Ray Bursts and the Earth: Exploration of Atmospheric, Biological, Climatic, and Biogeochemical Effects, The Astrophysical Journal, 634, 509-533.
- Douglass, A., et al. (2004), Radicals and reservoirs in the GMI chemistry and transport model: Comparison to measurements, J. Geophys. Res., 109, D16302, doi:10.1029/2004JD004632.
- Douglass, A., et al. (1990), Global Three-Dimensional Constituent Fields Derived From Profile Data, Geophys. Res. Lett., 17, 525-528.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.