Organization
NASA Goddard Space Flight Center
Email
Business Phone
Work
(301) 614-6186
Business Address
NASA Goddard Space Flight Center
Mailstop 613.0
Greenbelt, MD 20771
United States
First Author Publications
-
Meyer, K.G., et al. (2016), Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC), Atmos. Meas. Tech., 9, 1785-1797, doi:10.5194/amt-9-1785-2016.
-
Meyer, K.G., et al. (2016), Cirrus cloud optical and microphysical property retrievals from eMAS during SEAC4RS using bi-spectral reflectance measurements within the 1.88 µm water vapor absorption band, Atmos. Meas. Tech., 9, 1743-1753, doi:10.5194/amt-9-1743-2016.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.
Co-Authored Publications
-
Breen, K., et al. (2024), Abrupt reduction in shipping emission as an inadvertent geoengineering termination shock produces substantial radiative warming Check for updates 1,2 2,3 2 4 1,2 Tianle Yuan , Hua Song , Lazaros Oreopoulos , Robert Wood , Huisheng Bian ,, Nature, doi:10.1038/s43247-024-01442-3.
-
Stubenrauch, C., et al. (2024), Lessons Learned from the Updated GEWEX Cloud Assessment Database Claudia J. Stubenrauch1 · Stefan Kinne2 · Giulio Mandorli1 · William B. Rossow3 · David M. Winker4 · Steven A. Ackerman5 · Helene Chepfer1 · Larry Di Girolamo6 · Anne Garnier4,7 · Andrew Hei, Surv. Geophys., doi:10.1007/s10712-024-09824-0.
-
Doherty, S.J., et al. (2021), Modeled and observed properties related to the direct aerosol radiative effect of biomass burning aerosol over the Southeast Atlantic, Atmos. Chem. Phys.(submitted), doi:10.5194/acp-2021-333.
-
LeBlanc, S., et al. (2020), Above-cloud aerosol optical depth from airborne observations in the southeast Atlantic, Atmos. Chem. Phys., 20, 1565-1590, doi:10.5194/acp-20-1565-2020.
-
Mallet, M., et al. (2020), Direct and semi-direct radiative forcing of biomass burning aerosols over the Southeast Atlantic (SEA) and its sensitivity to absorbing properties: a regional climate modeling study, Atmos. Chem. Phys., acp-2020-317(manuscript in preparation).
-
Peers, F., et al. (2020), Observation of absorbing aerosols above clouds over the South-East Atlantic Ocean from the geostationary satellite SEVIRI - Part 2: Comparison with MODIS and aircraft measurements from the CLARIFY-2017 field campaign, Atmos. Chem. Phys. Discuss., in review, 1-30, doi:10.5194/acp-2019-1176.
-
Cochrane, S.P., et al. (2019), Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments, Atmos. Meas. Tech., 12, 6505-6528, doi:10.5194/amt-12-6505-2019.
-
Mallet, M., et al. (2019), Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the ALADIN regional climate model during the ORACLES-2016 and LASIC experiments, Atmos. Chem. Phys., 19, 4963-4990, doi:10.5194/acp-19-4963-2019.
-
Yang, Y., et al. (2019), Cloud products from the Earth Polychromatic Imaging Camera (EPIC): algorithms and initial evaluation, Atmos. Meas. Tech., 12, 2019-2031, doi:10.5194/amt-12-2019-2019.
-
Marshak, A., et al. (2018), Earth Observations From Dscovr Epic Instrument, Bull. Am. Meteorol. Soc., 1829-1850, doi:10.1175/BAMS-D-17-0223.1.
-
Xu, X., et al. (2018), A pilot study of shortwave spectral fingerprints of smoke aerosols above liquid clouds, J. Quant. Spectrosc. Radiat. Transfer, 221, 38-50, doi:10.1016/j.jqsrt.2018.09.024.
-
Ding, J., et al. (2017), Validation of quasi-invariant ice cloud radiative quantities with MODIS satellite-based cloud property retrievals, J. Quant. Spectrosc. Radiat. Transfer, 194, 47-57, doi:10.1016/j.jqsrt.2017.03.025.
-
Platnick, S.E., et al. (2017), The MODIS Cloud Optical and Microphysical Products: Collection 6 Updates and Examples From Terra and Aqua, IEEE Trans. Geosci. Remote Sens., 55, 502-525, doi:10.1109/TGRS.2016.2610522.
-
Rajapakshe, C., et al. (2017), Seasonally transported aerosol layers over southeast Atlantic are closer to underlying clouds than previously reported, Geophys. Res. Lett., 44, 5818-5825, doi:10.1002/2017GL073559.
-
Ding, J., et al. (2016), Ice cloud backscatter study and comparison with CALIPSO and MODIS satellite data Jiachen Ding,1 Ping Yang,1,* Robert E. Holz,2 Steven Platnick,3 Kerry G. Meyer,3,4 Mark, Optics Express, 24, 620-636, doi:10.1364/OE.24.000620.
-
Hioki, S., et al. (2016), Degree of ice particle surface roughness inferred from polarimetric observations, Atmos. Chem. Phys., 16, 7545-7558, doi:10.5194/acp-16-7545-2016.
-
Werner, F., et al. (2016), Marine boundary layer cloud property retrievals from high-resolution ASTER observations: case studies and comparison with Terra MODIS, Atmos. Meas. Tech., 9, 5869-5894, doi:10.5194/amt-9-5869-2016.
-
Zhang, Z., et al. (2016), A framework based on 2-D Taylor expansion for quantifying the impacts of subpixel reflectance variance and covariance on cloud optical thickness and effective radius retrievals based on the bispectral method, J. Geophys. Res., 121, 7007-7025, doi:10.1002/2016JD024837.
-
Cho, H., et al. (2015), Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over global oceans, J. Geophys. Res., 120, doi:10.1002/2015JD023161.
-
Zhang, Z., et al. (2014), A novel method for estimating shortwave direct radiative effect of above-cloud aerosols using CALIOP and MODIS data, Atmos. Meas. Tech., 7, 1777-1789, doi:10.5194/amt-7-1777-2014.
-
Davis, S., et al. (2009), Comparison of airborne in situ measurements and Moderate Resolution Imaging Spectroradiometer (MODIS) retrievals of cirrus cloud optical and microphysical properties during the Midlatitude Cirrus Experiment (MidCiX), J. Geophys. Res., 114, D02203, doi:10.1029/2008JD010284.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.