Fast Cloud Droplet Probe

SPEC has developed a Fast Cloud Droplet Probe (FCDP) with state-of-the-art electro-optics and electronics that utilizes forward scattering to determine cloud droplet distributions and concentrations in the range of 1.5 to 50 microns.  Though designed for cloud droplet measurements, the probe has also shown reliable measurements in ice clouds.  The new electronics include a temperature controlled fiber-coupled laser, FSSP-300 optics with pinhole limiting depth of field (Lance et al. 2010), a field programmable gate array (FPGA), 40 MHz analog-to-digital-converter (ADC) sampling, custom amplifiers, a very small and low power Linux based 400 MHz processor and a 16-Gigabyte flash drive that stores data at the probe.

Instrument Type: 
Point(s) of Contact: 

Particles in the Upper Troposphere/Lower Stratosphere

The PUTLS comprises three individual instruments for the measurement of aerosol number size distribution in the upper troposphere and lower stratosphere: a Nucleation Mode Aerosol Size Spectrometer (NMASS), an Ultra-High Sensitivity Aerosol Spectrometer (UHSAS), and a Portable Optical Particle Spectrometer (POPS). These instruments, along with a Passive, Near-Isokinetic Inlet for sampling atmospheric particles from a fast-moving aircraft, provide a measurement of the UT/LS particle size distribution from 4 to 3000 nm diameter. Aerosol microphysical measurements in the UT/LS are integral to understanding the chemical and radiative processes that control the Earth’s climate, and PUTLS provides data for investigation of topics ranging from new particle formation to long range transport of dust and fine volcanic ash.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Continuous Flow Diffusion Chambers

The continuous flow diffusion chambers are oriented for vertical flow through an annular space. They are constructed of two cylindrical, thin, ebonized copper walls that are separated by approximately 1.1 cm. The walls of the CFDC are force-cooled either by circulating coolant through copper tubing coils surrounding the outer wall and inside the inner wall (laboratory CFDC) or by using these same coolant coils as evaporators for refrigeration compressor units (aircraft CFDC). In operation, the walls are coated with ice, achieved by flooding the chamber with water. An inlet manifold directs sample air containing aerosol particles into the center of a laminar flow field where the sample is surrounded on either side by particle-free sheath air (or N2). By varying the set temperatures of the two walls, the warm wall provides a vapor source to the cold wall so that water vapor and temperature fields are created. These fields and airflow determine the conditions of exposure for the aerosols during their typical 5 to 20 s residence time in the CFDC. Ice particles grow to relatively large sizes compared to aerosol particles and are distinguished from them using an optical particle counter (0.4 to 20 mm) at the base of the CFDC.

The aircraft CFDC transitions to a hydrphobic warm wall surface in the lower third of the device so that liquid water drops formed at RH>100% will evaporate, leaving only ice crystals as large particles. The only other physical differences between the two devices is the fact that the laboratory CFDC is approximately 50% longer, providing additional ice crystal growth time at ambient lab pressures and the laboratory device has associated equipment for aerosol generation and preconditioning.

An impactor is sometimes used following the optical counter to collect ice crystals onto specialized transmission electron microscope (TEM) grids for analysis of the residual particles. Calculations of air flow, temperature, and humidity are made assuming steady-state conditions (Rogers, 1988). The temperature and supersaturation range are determined by wall temperatures and air flow.

Instrument Type: 
Point(s) of Contact: 

Langley Aerosol Research Group Experiment

Langley Aerosol Research Group Experiment (LARGE).  The "classic" suite of instrumenation measures in-situ aerosol micrphysical and optical properties. The package can be tailored for specific science objectives and to operate on a variety of aircraft. Depending on the aircraft, measurments are made from either a shrouded single-diffuser "Clarke" inlet, from a BMI (Brechtel Manufacturing Inc.) isokinetic inlet, or from a HIML inlet. Primary measurements include:

1.) total and non-volatile particle concentrations (3nm and 10nm nominal size cuts),
2.) dry size distributions from 3nm to 5µm diameter using a combination of mobilty-optical-aerodynamic sizing techniques,
3.) dry and humidified scattering coefficients (at 450, 550, and 700nm wavelength), and
4.) dry absorption coefficients (470, 532, and 670nm wavelength). 

LARGE derived products include particle size statistics (integrated number, surface area, and volume concentrations for ultrafine, accumulation, and coarse modes), dry and ambient aerosol extinction coefficients, single scattering albedo, angstrom exponent coefficients, and scattering hygroscopicity parameter f(RH).

Aircraft: 
DC-8 - AFRC, C-130H - WFF, P-3 Orion - WFF, HU-25 Falcon - LaRC, King Air B-200 - LaRC/Dynamic, Twin Otter - CIRPAS - NPS
Point(s) of Contact: 

Forward Scattering Spectrometer Probe

The FSSP is of that general class of instruments called optical particle counters (OPCs) that detect single particles and size them by measuring the intensity of light that the particle scatters when passing through a light beam. A Helium Neon laser beam is focused to a diameter of 0.2 mm at the center of an inlet that faces into the oncoming airstream. This laser beam is blocked on the opposite side of the inlet with an optical stop, a "dump spot" to prevent the beam from entering the collection optics. Particles that encounter this beam scatter light in all directions and some of that scattered in the forward direction is directed by a right angle prism though a condensing lens and onto a beam splitter. The "dump spot" on the prism and aperture of the condensing lens define a collection angle from about 4º - 12º.

The beam splitter divides the scattered light into two components, each of which impinge on a photodetector. One of these detectors, however, is optically masked to receive only scattered light when the particles pass through the laser beam displaced greater than approximately 1.5 mm either side of the center of focus. Particles that fall in that region are rejected when the signal from the masked detector exceeds that from the unmasked detector. This defines the sample volume needed to calculate particle concentrations.

Instrument Type: 
Point(s) of Contact: 

SPP-100

Measurements: 
Aircraft: 
Point(s) of Contact: 

Hawaii Group for Environmental Aerosol Research

1) Time of Flight Aerosol Mass Spectrometer (ToF-AMS)

Total and single particle characterization of volatile aerosol ionic and organic components (50-700nm). Uncertainty depends on species and concentration.

2) Single Particle Soot Photometer (SP2)

Single particle measure of BC (soot) mass in particles and determination of mixed particle size and non-BC coating using laser scattering and incandescence. 70-700nm. Single particle counting up to 10,000 per sec.

3) A size-resolved thermo-optic aerosol discriminator (30 s avg.):

Aerosol size distribution from 0.12 up to 7.0 μm, often where most aerosol mass, surface area and optical effects are dominant. Uses a modified Laser Optical Particle Counter (OPC) and computer controlled thermal conditioning system is used upstream (airstream dilution dried). Characterizes aerosol components volatile at 150, 300 and 400C and refractory aerosol at 400C (sea salt, dust and soot/flyash). (Clarke, 1991, Clarke et al., 2004). Uncertianty about 15%

4) Condensation Nuclei - heated and unheated (available at 1Hz)

Two butanol based condensation nuclei (CN) counter (TSI 3010) count all particles between 0.01-3.0 um. Total CN, refractory CN (those remaining at 300C after sulfate is removed) and volatile CN (by difference) are obtained as a continuous readout as a fundamental air mass indicator (Clarke et al. 1996). Uncertainty ~ 5%.

5) Aerodynamic Particle Sizer – (APS-TSI3320) – (<5min/scan)

To further characterize larger “dry” particles, including dust, an APS is operated which sizes particles aerodynamically from 0.8 to 20 μm into 50 channels. Uncertainty~10%.

6) Differential Mobility Analyzer with thermal conditioning – (<3 min/scan)

Volatility tandem thermal differential mobility analyzer (VTTDMA) with thermal analysis that provides size information (mass, surface area, number distributions) and their state of mixing over the 0.01 to 0.3μm size range (Clarke et al., 1998, 2007) for sampling times of about 1-3 minutes. Uncertainty ~10%

7) Nephelometer (10-7 m-1 detection for 60s avg., recorded every 1 sec.)

A 3 wavelength nephelometer (450, 550, 700nm) is used for total scattering and submicrometer scattering values using a Radiance Research single wavelength nephelometer (and thereby coarse dust scattering by difference).

8) Two Particle Soot Absorption Photometers (PSAP-Radiance Research; detection <0.1μg m-3 for 5 min. avg. )

The PSAP is used to quantify the spectral light absorption coefficient of the total and submicron aerosol (eg. soot, BC) at three wavelengths (450, 550, 660nm).

9) Humidity Dependent Light-Scattering (10-6 m-1 detection for 60s avg.; recorded every 1 s)

Two additional Radiance Research single-wavelength nephelometers are operated at two humidities (high/low) to establish the humidity dependence of light scattering, f(RH).

Point(s) of Contact: 

Cloud Integrating Nephelometer

The CIN-100A is designed for aircraft mounting and measures the optical extinction coefficient and asymmetry parameter.

Instrument Type: 
Point(s) of Contact: 

Focused Cavity Aerosol Spectrometer

The FCAS II sizes particles in the approximate diameter range from 0.07 mm to 1 mm. Particles are sampled from the free stream with a near isokinetic sampler and are transported to the instrument. They are then passed through a laser beam and the light scattered by individual particles is measured. Particle size is related to the scattered light. The data reduction for the FCAS II takes into account the water which is evaporated from the particle in sampling and the effects of anisokinetic sampling (Jonsson et al., 1995).

The FCAS II and its predecessors have provided accurate aerosol size distribution measurements throughout the evolution of the volcanic cloud produced by the eruption of Mt. Pinatubo. (Wilson et al., 1993). Near co-incidences between FCAS II and SAGE II measurements show good agreement between optical extinctions calculated from FCAS size distributions and extinctions measured by SAGE II.

Accuracy: The instrument has been calibrated with monodisperse aerosol carrying a single charge. The FCAS III and the electrometer agree to within 10%. Sampling errors may increase the uncertainty but a variety of comparisons suggests that total uncertainties in aerosol surface are near 30% (Jonsson, et al., 1995).

Precision: The precision equals 1/ÖN where N is the number of particles counted. In many instances the precision on concentration measurements may reach 7% for 0.1 Hz data. If better precision is desired, it is necessary only to accumulate over longer time intervals.

Response Time: Data are processed at 0.1 Hz. However, the response time depends upon the precision required to detect the change in question. Small changes may require longer times to detect. Plume measurements may be processed with 1 s resolution.

Weight: Approximately 50 lbs.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Aerosol Optical Properties

Aerosols (particulate matter) have a dramatic effect on radiative forcing of the climate, in some cases cooling and in other cases warming. The Fourth Assessment Report of the IPCC estimates that direct radiative forcing due to all aerosols is a cooling of -0.50 W m-2 with absorbing aerosol (black carbon) responsible for a warming of +0.22 W m-2, but the uncertainties associated with these numbers are very large. Better measurements of the optical properties of aerosols, especially absorption coefficient and asymmetry parameter, and their spatial and temporal distribution are required to reduce these uncertainties and improve the ability of models to predict climate change. Aero3X was designed to provide such measurements. It is a light weight (11 kg), compact (0.25 x 0.30 x 0.6 m), and fast (1 Hz sample rate) instrument intended for use on an Unmanned Aerial System (UAS) but suitable for flight on other aircraft and for surface measurements. Aero3X uses an off-axis cavity ring-down technique to measure extinction coefficient and a reciprocal nephelometry technique for measurement of total-, forward- and back-scatter coefficients at wavelengths of 405 nm and 675 nm. Its outstanding precision (0.1 Mm-1) and sensitivity (0.2 Mm- 1) allow the determination of absorption coefficient, single-scattering albedo, estimates of backscatter to extinction ratio and asymmetry parameter at both wavelengths, and Angstrom exponent. Together with its humidification system for measurement of the dependence of aerosol optical properties on relative humidity, these represent a complete set of the aerosol optical properties important to climate and air quality. Aero3X was designed to operate in pollution plumes where NO2 may cause interference with the measurement, therefore, a measurement of NO2 mixing ratio is also made.

Instrument Type: 
Point(s) of Contact: 
Subscribe to RSS - Optical particle counter