Associated content: 

DC8 over Bahamas during CPEX-AW transit flight [08.17.21]

Amin Nehrir (LaRC HALO) and Kris Bedka (LaRC DAWN) aboard DC8 [08.17.21]

Particle Analysis By Laser Mass Spectrometry- Next Generation

The Purdue PALMS-NG instrument measures single-particle aerosol composition using UV laser ablation to generate ions that are analyzed with a time-of-flight mass spectrometer.  The PALMS size range is approximately 150 to >3000 nm and encompasses most of the accumulation and coarse mode aerosol volume. Individual aerosol particles are classified into compositional classes.  The size-dependent composition data is combined with aerosol counting instruments from Aerosol Microphysical Properties (AMP), the Langley Aerosol Research Group Experiment (LARGE), and other groups to generate quantitative, composition-resolved aerosol concentrations.  Background tropospheric concentrations of climate-relevant aerosol including mineral dust, sea salt, and biomass burning particles are the primary foci for the ATom campaigns.  PALMS also provides a variety of compositional tracers to identify aerosol sources, probe mixing state, track particle aging, and investigate convective transport and cloud processing.

*_Standard data products_**: *

Particle type number fractions: sulfate/organic/nitrate mixtures, biomass burning, EC, sea salt, mineral dust, meteoric, alkali salts, heavy fuel combustion, and other. Sampling times range from 1-5 mins.

*_Advanced data products_**:*

Number, surface area, volume, and mass concentrations of the above particle types. Total sulfate and organic mass concentrations. Relative and absolute abundance of various chemical markers and aerosol sub-components: methanesulfonic acid, sulfate acidity, organic oxidation level, iodine, bromine, organosulfates, pyridine, and other species.

Instrument Type: 
ER-2 - AFRC, ER-2 - AFRC, DC-8 - AFRC
Point(s) of Contact: 

The thumbs up from DAWN and HALO

Rob Beauchamp and Gregg Dobrowalski working on APR-3


Subscribe to RSS - DC-8 - AFRC