POS AV is a hardware and software system specifically designed for direct georeferencing of airborne sensor data. By integrating precision GNSS with inertial technology, POS AV enables geospatial projects to be completed more efficiently, effectively, and economically. POS AV is engineered for aerial cameras, scanning lasers, imaging sensors, synthetic aperture radar, and LIDAR technology.
DC-8 - AFRC
PolSCAT is a Ku-band polarmetric scanning scatterometer operating at 13.95 GHz. with an approved NASA license. The transmitting polarizations of PolSCAT, alternating between Vertical and Horizontal, from pulse to pulse. Two receivers detect the V and H polarized radar echoes simultaneously allowing for measurements of VV, HH, VH, and HV radar responses. It provides scalable resolution, between 3,000 and 20,000 feet AGL.
The PolSCAT antenna assembly includes two axis gimbals for conically scanning, parabolic antenna, which is controlled from 0° (nadir) to 65 degrees. It was designed and built to investigate the benefits of active microwave for the remote sensing of high resolution snow-water-equivalent (SWE).
PolSCAT’s flexible design is compatible with many aircraft. It has flown on the NCAR C-130, NASA’s DC-8, P-3, and Twin Otter International’s, Twin Otter. Flown more than 500 hours in support of NASA’s Cold Land Process (CLPX) campaigns, PolSCAT is a very mature instrument.
PANTHER uses Gas Chromatography with Electron Capture Detection and (GC-ECD) and Gas Chromatography with Mass Selective Detection (GC-MSD) to measure numerous trace gases, including methyl halides, HCFCs, peroxyacetyl nitrate, nitrous oxide, SF6, CFC-12, CFC-11, Halon-1211, methyl chloroform, carbon tetrachloride.
3 ECDs with packed columns (OV-101, Porapak-Q, molecular sieve).
1 ECD with a TE (thermal electric) cooled RTX-200 capillary column.
2-channel MSD (mass selective detector). The MSD analyzes two independent samples air concentrated onto TE cooled Haysep traps, which are then heated to desorb the analytes and separate using through two temperature programmed RTX-624 capillary columns.
With the exception of PAN, all channels of chromatography are normalized to a stable in-flight calibration gas references to NOAA scales. The PAN data are normalized to an in-flight PAN source of ≈ 100 ppt with ±5 % reproducibility. This source is generated by efficient photolytic conversion of NO in the presence of acetone. Detector non-linearity is taken out by lab calibrations for all molecules.
The Ames PANAK instrument is a computerized 3- channel Capillary Gas Chromatographic system designed for the collection and analysis of low ppt (10-12 v/v) levels of peroxyacyl nitrates (PANs), alkyl nitrates, and tertrachloroethene in Channels 1 and 2; and C2-C3 aldehydes, C1-C2 alcohols, C3-C4 ketones, and C1-C2 nitriles in channel 3. Channels 1 and 2 use ECD detectors and have a sampling frequency of 2.5 minutes. Channel 3 uses a Photo Ionization detector placed in series with a Reduction Gas detector and has a sampling frequency of 5 minutes. The main manifold draws 5 SL/min of ambient air through a heated Teflon lined probe from which each of the three instrument channels draws a 200 ml aliquot of sample air. This aliquot is dried by passing it through a –35 °C cold trap, cooled to -140 °C for constituent pre concentration, and then heat desorbed into the gas chromatographic columns. All calibrations are performed in-flight by using an installed dilution system and in a manner that mimics ambient air sampling. Primary standards are generally referred to a series of permeation tubes. In addition high concentration standards are also carried on board. Sensitivities under typical conditions are: 1-3 ppt PANs, 1-5 ppt alkyl nitrates, 5-20 ppt OVOC, and 20-30 ppt nitriles.
The PAN-CIGAR chemical ionization mass spectrometer which measures up to 7 PAN species simultaneously and semi-continuously with a time resolution of ~2 seconds. The method is based on the detection of the acylperoxy radicals formed from thermal decomposition of the PAN species at the inlet by reacting them with iodide ions, which are formed by passing methyl iodide diluted in nitrogen through an α–particle source. The reaction of the peroxy acyl radicals with I- forms IO and the acyl ion, which is detected using a quadrupole mass spectrometer (Extrel) at a mass to charge ratio of 59 in the case of PAN. The method is very specific for PAN type compounds and the limit of detection is ~1 pptv/s or better for most PAN species. The instrument employs a realtime continuous calibration using isotopically labeled PAN produced in-situ by a photolytic calibration source.
PALS is a combined polarimetric radiometer and NASA licensed radar sharing a rotating planar array antenna. The PALS instrument includes a combined L-band radiometer and scatterometer , operating at 1.413 GHz and 1.26 GHz respectively. It was designed and built to investigate the benefits of combining passive and active microwave sensors for Ocean salinity and Soil moisture remote sensing. It is the prototype for the Aquarius and SMAP missions and its flexible design is compatible with many aircraft.
The PALS radar and radiometer time share a dual pole, dual frequency planner array antenna. The antenna configuration can be fixed or rotating. It provides scalable resolution, between 3,000 and 20,000 feet AGL. It is an Aquarius and SMAP test bed.
PALS has flown on the NCAR C-130, NASA’s P-3 and Twin Otter International’s, Twin Otter. It is a very mature instrument, and has flown more than 800 hours, in support of NASA campaigns.
The NOAA PALMS instrument measures single-particle aerosol composition using UV laser ablation to generate ions that are analyzed with a time-of-flight mass spectrometer. The PALMS size range is approximately 150 to >3000 nm and encompasses most of the accumulation and coarse mode aerosol volume. Individual aerosol particles are classified into compositional classes. The size-dependent composition data is combined with aerosol counting instruments from Aerosol Microphysical Properties (AMP), the Langley Aerosol Research Group Experiment (LARGE), and other groups to generate quantitative, composition-resolved aerosol concentrations. Background tropospheric concentrations of climate-relevant aerosol including mineral dust, sea salt, and biomass burning particles are the primary foci for the ATom campaigns. PALMS also provides a variety of compositional tracers to identify aerosol sources, probe mixing state, track particle aging, and investigate convective transport and cloud processing.
*_Standard data products_**: *
Particle type number fractions: sulfate/organic/nitrate mixtures, biomass burning, EC, sea salt, mineral dust, meteoric, alkali salts, heavy fuel combustion, and other. Sampling times range from 1-5 mins.
*_Advanced data products_**:*
Number, surface area, volume, and mass concentrations of the above particle types. Total sulfate and organic mass concentrations. Relative and absolute abundance of various chemical markers and aerosol sub-components: methanesulfonic acid, sulfate acidity, organic oxidation level, iodine, bromine, organosulfates, pyridine, and other species.
The Nevzorov liquid water content (LWC) and total water content (TWC) probe is a constant-temperature, hot-wire probe designed for aircraft measurements of the ice and liquid water content of clouds. The probe consists of two separate sensors for measurements of cloud liquid and total (ice plus liquid) water content. Each sensor consists of a collector and a reference winding. The reference sensors are shielded from impact with cloud particles, specifically to provide an automatic compensation for convective heat losses.
The sensitivity of the probe is estimated to be approximately 0.003– 0.005 g m23. The accuracy of LWC measurements in nonprecipitating liquid clouds is estimated as 10%–15%. Tests at the NRC high-speed icing tunnel have provided verification of the TWC measurement for small frozen droplets to an accuracy of approximately 10%–20%, but verification in snow and natural ice crystals has not yet been possible due to the absence of any accurate standards. The TWC measurement offers not only the possibility of direct measurements of ice content but also improved liquid water contents in drizzle situations. Airborne measurements have provided data on the baseline drift and sensitivity of the probe and have provided comparisons to other conventional instruments. Several cases have been documented that exhibit the unique capabilities of the instrument to separate the ice and liquid components of supercooled clouds.
NUV measures near-UV emissions of N2+ and CN molecules from air plasma and ablation products.
This instrument consists of an intensified high definition TV camera equipped with a transmission grating with 600 grooves per mm, blazed at 550 nm, made by Jobin Yvon. The camera has a blue sensitive 1-inch 2M-pixel FIT CCD, which has a resolution of 1150 TV lines. A 50 mm f1.0 lens provides a large 37 x 21 degree field of view. No coaligned camera is needed.
The nucleation-mode aerosol size spectrometer (NMASS) measures the concentration of particles as a function of diameter from approximately 4 to 60 nm. A sample flow is continuously extracted from the free stream using a decelerating inlet and is transported to the NMASS. Within the instrument, the sample flow is carried to 5 parallel condensation nucleus counters (CNCs) as shown in Fig. 1. Each CNC is tuned to measure the cumulative concentration of particles larger than certain diameter. The minimum detectable diameters for the 5 CNCs are 4.0, 7.5, 15, 30 and 55 nm, respectively. An inversion algorithm is applied to recover a continuous size distribution in the 4 to 60 nm diameter range.
The NMASS has been proven particularly useful in measurements of nucleation-mode size distribution in environments where concentrations are relatively high and fast instrumental response is required. The instrument has made valuable measurements vicinity of cirrus clouds in the upper troposphere and lower stratosphere (WAM), in the near-field exhaust of flying aircraft (SULFUR 6), in newly created rocket plumes (ACCENT), and in the plumes of coal-fired power plants (SOS ’99). The instrument has flown on 3 different aircraft and operated effectively at altitudes from 50 m to 19 km and ambient temperatures from 35 to -80ºC.
Accuracy. The instrument is calibrated using condensationally generated particles that are singly charged and classified by differential electrical mobility. Absolute counting efficiencies are determined by comparison with an electrometer. Monte carlo simulations of the propagation of uncertainties through the numerical inversion algorithm and comparison with established laboratory techniques are used to establish accuracies for particular size distributions, and may vary for different particle size distributions. A study of uncertainties in aircraft plume measurements demonstrated a combined uncertainty (accuracy and precision) of 38%, 36% and 38% for number, surface and volume, respectively.
Precision. The precision is controlled by particle counting statistics for each channel. If better precision is desired, it is necessary only to accumulate over longer time intervals.
Response Time: Data are recorded with 10 Hz resolution, and the instrument has demonstrated response times of this speed in airborne sampling. However the effective response time depends upon the precision required to detect the change in question. Small changes may require longer times to detect. Plume measurements with high concentrations of nucleation-mode particles may be processed at 10 Hz.
Specifications: Weight is approximately 96 lbs, including an external pump. External dimensions are approximately 15”x16”x32”. Power consumption is 350 W at 28 VDC, including the pump.