Maciel, F.V., et al. (2023), Examination of aerosol indirect effects during cirrus cloud evolution, Atmos. Chem. Phys., 23, 1103-1129, doi:10.5194/acp-23-1103-2023.
MACPEX
Froyd, K., et al. (2019), A new method to quantify mineral dust and other aerosol species from aircraft platforms using single-particle mass spectrometry, Atmos. Meas. Tech., 12, 6209-6239, doi:10.5194/amt-12-6209-2019.
Perring, A., et al. (2013), Evaluation of a Perpendicular Inlet for Airborne Sampling of Interstitial Submicron Black-Carbon Aerosol, Aerosol Sci. Tech., 47, 1066-1072, doi:10.1080/02786826.2013.821196.
Ullrich, R., et al. (2019), Comparison of Modeled and Measured Ice Nucleating Particle Composition in a Cirrus Cloud, J. Atmos. Sci., 76, 1015-1029, doi:10.1175/JAS-D-18-0034.1.
Cziczo, D., and K. Froyd (2014), Sampling the composition of cirrus ice residuals, Atmos. Res., 142, 15-31, doi:10.1016/j.atmosres.2013.06.012.
Thornberry, T., et al. (2013), Measurement of low-ppm mixing ratios of water vapor in the upper troposphere and lower stratosphere using chemical ionization mass spectrometry, Atmos. Meas. Tech., 6, 1461-1475, doi:10.5194/amt-6-1461-2013.
Cziczo, D., et al. (2013), Clarifying the Dominant Sources and Mechanisms of Cirrus Cloud Formation, Science, 340, 1320-1324.