The Ames Sunphotometer Satellite Group website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.
E. W. Eloranta
Organization:
University of Wisconsin–Madison
Business Address:
Space Science and Engineering Center
Madison, WI 53706
United StatesCo-Authored Publications:
- Lorenzo, G. R., et al. (2021), Measurement report: Firework impacts on air quality in Metro Manila, Philippines, during the 2019 New Year revelry, Atmos. Chem. Phys., 21, 6155-6173, doi:10.5194/acp-21-6155-2021.
- Albrecht, B., et al. (2019), Cloud System Evolution In The Trades (Cset): Following Evolution of Boundary Layer Cloud Systems with the NSF-NCAR GV, Bull. Am. Meteorol. Soc., 100, 93-121, doi:10.1175/BAMS-D-17-0180.1.
- Silber, I., et al. (2019), Persistent Supercooled Drizzle at Temperatures Below −25 °C Observed at McMurdo Station, Antarctica, J. Geophys. Res., 124, 10,878-10,895, doi:10.1029/2019JD030882.
- Wood, R., et al. (2018), Ultraclean Layers and Optically Thin Clouds in the Stratocumulus-to-Cumulus Transition. Part I: Observations, J. Atmos. Sci., 75, 1631-1652, doi:10.1175/JAS-D-17-0213.1.
- Painemal, D., et al. (2017), Aerosol and cloud microphysics covariability in the northeast Pacific boundary layer estimated with ship-based and satellite remote sensing observations, J. Geophys. Res., 122, 2403-2418, doi:10.1002/2016JD025771.
- Reid, J., et al. (2017), Ground-based High Spectral Resolution Lidar observation of aerosol vertical distribution in the summertime Southeast United States, J. Geophys. Res., 122, doi:10.1002/2016JD025798.
- Sullivan, J., et al. (2015), Characterizing the lifetime and occurrence of stratospherictropospheric exchange events in the rocky mountain region using high-resolution ozone measurements, J. Geophys. Res., 120, doi:10.1002/2015JD023877.
- Blanchard, Y., et al. (2014), A Synergistic Analysis of Cloud Cover and Vertical Distribution from A-Train and Ground-Based Sensors over the High Arctic Station Eureka from 2006 to 2010, J. Appl. Meteor. Climat., 53, 2553-2570, doi:10.1175/JAMC-D-14-0021.1.
- Di Pierro, M., et al. (2013), Spatial and seasonal distribution of Arctic aerosols observed by the CALIOP satellite instrument (2006–2012), Atmos. Chem. Phys., 13, 7075-7095, doi:10.5194/acp-13-7075-2013.
- Saha, A., et al. (2010), Pan‐Arctic sunphotometry during the ARCTAS‐A campaign of April 2008, Geophys. Res. Lett., 37, L05803, doi:10.1029/2009GL041375.
- van Diedenhoven, B., et al. (2009), An evaluation of ice formation in large-eddy simulations of supercooled Arctic stratocumulus using ground-based lidar and cloud radar, J. Geophys. Res., 114, D10203, doi:10.1029/2008JD011198.
- de Boer, G., G. Tripoli, and E. W. Eloranta (2008), Preliminary comparison of CloudSAT-derived microphysical quantities with ground-based measurements for mixed-phase cloud research in the Arctic, J. Geophys. Res., 113, D00A06, doi:10.1029/2008JD010029.
- Whiteman, D., et al. (2001), Raman lidar measurements of water vapor and cirrus clouds during the passage of Hurricane Bonnie, J. Geophys. Res., 106, 5211-5225.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.