Business Address:
Billerica, MA 01821
United StatesFirst Author Publications:
- Nault, B., et al. (2021), Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere, Commun Earth Environ, 2, doi:10.1038/s43247-021-00164-0.
- Nault, B., et al. (2021), Secondary organic aerosols from anthropogenic volatile organic compounds contribute substantially to air pollution mortality, Atmos. Chem. Phys., 21, 11201-11224, doi:10.5194/acp-21-11201-2021.
- Nault, B., et al. (2020), Interferences with aerosol acidity quantification due to gas-phase ammonia uptake onto acidic sulfate filter samples, Atmos. Meas. Tech., 13, 6193-6213, doi:10.5194/amt-13-6193-2020.
- Nault, B., et al. (2018), Secondary organic aerosol production from local emissions dominates the organic aerosol budget over Seoul, South Korea, during KORUS-AQ, Atmos. Chem. Phys., 18, 17769-17800, doi:10.5194/acp-18-17769-2018.
- Nault, B., et al. (2017), Lightning NOx Emissions: Reconciling Measured and Modeled Estimates With Updated NOx Chemistry, Geophys. Res. Lett., 44, 9479-9488, doi:10.1002/2017GL074436.
- Nault, B., et al. (2016), Observational Constraints on the Oxidation of NOx in the Upper Troposphere, J. Phys. Chem. A, 120, 1468-1478, doi:10.1021/acs.jpca.5b07824.
- Nault, B., et al. (2015), Measurements of CH3O2NO2 in the upper troposphere, Atmos. Meas. Tech., 8, 987-997, doi:10.5194/amt-8-987-2015.
Co-Authored Publications:
- Bian, H., et al. (2024), Observationally constrained analysis of sulfur cycle in the marine atmosphere with NASA ATom measurements and AeroCom model simulations, Atmos. Chem. Phys., doi:10.5194/acp-24-1717-2024.
- Decker, Z., et al. (2024), Airborne Observations Constrain Heterogeneous Nitrogen and Halogen Chemistry on Tropospheric and Stratospheric Biomass Burning Aerosol, Geophys. Res. Lett., 51, e2023GL107273, doi:10.1029/2023GL107273.
- Gkatzelis, G., et al. (2024), Parameterizations of US wildfire and prescribed fire emission ratios and emission factors based on FIREX-AQ aircraft measurements, Atmos. Chem. Phys., doi:10.5194/acp-24-929-2024.
- Gkatzelis, G., et al. (2024), Parameterizations of US wildfire and prescribed fire emission ratios and emission factors based on FIREX-AQ aircraft measurements, Atmos. Chem. Phys., doi:10.5194/acp-24-929-2024.
- Bian, H., et al. (2023), Observationally constrained analysis of sulfur cycle in the marine atmosphere with NASA ATom measurements and AeroCom model simulations, doi:10.5194/egusphere-2023-1966 (submitted).
- Brewer, J. F., et al. (2023), A Scheme for Representing Aromatic Secondary Organic Aerosols in Chemical Transport Models: Application to Source Attribution of Organic Aerosols Over South Korea During the KORUS-AQ Campaign, J. Geophys. Res., e2022JD037257, doi:10.1029/2022JD037257.
- Jo, D., et al. (2023), Global Health and Climate Effects of Organic Aerosols from Different Sources, Environ. Sci. Technol., 57, 13793-13807, doi:10.1021/acs.est.3c02823.
- Katich, J., et al. (2023), Pyrocumulonimbus affect average stratospheric aerosol composition, Science, 379, 815-820, doi:10.1126/science.add3101.
- Pagonis, D., et al. (2023), Impact of Biomass Burning Organic Aerosol Volatility on Smoke Concentrations Downwind of Fires, Environ. Sci. Technol., 57, 17011-17021, doi:10.1021/acs.est.3c05017.
- Rickly, P., et al. (2023), Emission factors and evolution of SO2 measured from biomass burning in wildfires and agricultural fires, Atmos. Chem. Phys., doi:10.5194/acp-22-15603-2022.
- Shah, V., et al. (2023), Nitrogen oxides in the free troposphere: implications for tropospheric oxidants and the interpretation of satellite NO2 measurements, Atmos. Chem. Phys., doi:10.5194/acp-23-1227-2023.
- Shah, V., et al. (2023), Nitrogen oxides in the free troposphere: implications for tropospheric oxidants and the interpretation of satellite NO2 measurements, Atmos. Chem. Phys., doi:10.5194/acp-23-1227-2023.
- Tomsche, L., et al. (2023), Measurement report: Emission factors of NH3 and NHx for wildfires and agricultural fires in the United States, Atmos. Chem. Phys., doi:10.5194/acp-23-2331-2023.
- Travis, K. R., et al. (2023), Emission Factors for Crop Residue and Prescribed Fires in the Eastern US during FIREX-AQ, J. Geophys. Res., 128, e2023JD039309, doi:10.1029/2023JD039309.
- Zhu, H., et al. (2023), Parameterization of size of organic and secondary inorganic aerosol for efficient representation of global aerosol optical properties, Atmos. Chem. Phys., doi:10.5194/acp-23-5023-2023.
- Bourgeois, I., et al. (2022), Comparison of airborne measurements of NO, NO2, HONO, NOy , and CO during FIREX-AQ, Atmos. Meas. Tech., 15, 4901-4930, doi:10.5194/amt-15-4901-2022.
- Bourgeois, I., et al. (2022), Large contribution of biomass burning emissions to ozone throughout the global remote troposphere, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2109628118.
- Day, D. A., et al. (2022), A systematic re-evaluation of methods for quantification of bulk particle-phase organic nitrates using real-time aerosol mass spectrometry, Atmos. Meas. Tech., 15, 459-483, doi:10.5194/amt-15-459-2022.
- Kim, D., et al. (2022), Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol, Atmos. Chem. Phys., doi:10.5194/acp-22-805-2022.
- Lee, Y. R., et al. (2022), An investigation of petrochemical emissions during KORUS-AQ: Ozone production, reactive nitrogen evolution, and aerosol production. Elementa: Science of the Anthropocene, 10, 00079-24, doi:10.1525/elementa.2022.00079.
- Oak, Y. J., et al. (2022), Evaluation of Secondary Organic Aerosol (SOA) Simulations for Seoul, Korea, J. Adv. Modeling Earth Syst..
- Travis, K. R., et al. (2022), Limitations in representation of physical processes prevent successful simulation of PM2.5 during KORUS-AQ, Atmos. Chem. Phys., doi:10.5194/acp-22-7933-2022.
- Brock, C., et al. (2021), Ambient aerosol properties in the remote atmosphere from global-scale in situ measurements, Atmos. Chem. Phys., 21, 15023-15063, doi:10.5194/acp-21-15023-2021.
- Chen, X., et al. (2021), HCOOH in the Remote Atmosphere: Constraints from Atmospheric Tomography (ATom) Airborne Observations, ACS Earth Space Chem., doi:10.1021/acsearthspacechem.1c00049.
- Gonzalez, Y., et al. (2021), Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom, Atmos. Chem. Phys., 21, 11113-11132, doi:10.5194/acp-21-11113-2021.
- Guo, H., et al. (2021), The importance of size ranges in aerosol instrument intercomparisons: a case study for the Atmospheric Tomography Mission, Atmos. Meas. Tech., 14, 3631-3655, doi:10.5194/amt-14-3631-2021.
- Kenagy, H., et al. (2021), Contribution of Organic Nitrates to Organic Aerosol over South Korea during KORUS-AQ, Environ. Sci. Technol., 55, 16326-16338, doi:10.1021/acs.est.1c05521.
- Moore, R., et al. (2021), Sizing response of the Ultra-High Sensitivity Aerosol Spectrometer (UHSAS) and Laser Aerosol Spectrometer (LAS) to changes in submicron aerosol composition and refractive index, Atmos. Meas. Tech., 14, 4517-4542, doi:10.5194/amt-14-4517-2021.
- Pagonis, D., et al. (2021), Airborne extractive electrospray mass spectrometry measurements of the chemical composition of organic aerosol, Atmos. Meas. Tech., 14, 1545-1559, doi:10.5194/amt-14-1545-2021.
- Schueneman, M., et al. (2021), Aerosol pH indicator and organosulfate detectability from aerosol mass spectrometry measurements, Atmos. Meas. Tech., 14, 2237-2260, doi:10.5194/amt-14-2237-2021.
- Schueneman, M., et al. (2021), Aerosol pH Indicator and Organosulfate Detectability from Aerosol Mass Spectrometry Measurements, Atmos. Meas. Tech., doi:10.5194/amt-2020-339.
- Thompson, C., et al. (2021), The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-20-0315.1.
- Zhai, S., et al. (2021), Relating geostationary satellite measurements of aerosol optical depth (AOD) over East Asia to fine particulate matter (PM2.5): insights from the KORUS-AQ aircraft campaign and GEOS-Chem model simulations, Atmos. Chem. Phys., 21, 16775-16791, doi:10.5194/acp-21-16775-2021.
- Heim, E. W., et al. (2020), Asian dust observed during KORUS-AQ facilitates the uptake and incorporation of soluble pollutants during transport to South Korea, Atmos. Environ., 224, 117305, doi:10.1016/j.atmosenv.2020.117305.
- Hodzic, A., et al. (2020), Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models, Atmos. Chem. Phys., 20, 4607-4635, doi:10.5194/acp-20-4607-2020.
- Hu, W., et al. (2020), Ambient Quantification and Size Distributions for Organic Aerosol in Aerosol Mass Spectrometers with the New Capture Vaporizer, Anal. Chem., 676, 676−689, doi:10.1021/acsearthspacechem.9b00310.
- Jordan, C. E., et al. (2020), Investigation of factors controlling PM2.5 variability across the South Korean Peninsula during KORUS-AQ, variability across the South Korean Peninsula during KORUS-AQ, 8, 28, doi:10.1525/elementa.424.
- Koenig, T., et al. (2020), Quantitative detection of iodine in the stratosphere, Proc. Natl. Acad. Sci., 117, doi:10.1073/pnas.1916828117.
- Pai, S. J., et al. (2020), An evaluation of global organic aerosol schemes using airborne observations, Atmos. Chem. Phys., 20, 2637-2665, doi:10.5194/acp-20-2637-2020.
- Saide Peralta, et al. (2020), Understanding and improving model representation of aerosol optical properties for a Chinese haze event measured during KORUS-AQ, Atmos. Chem. Phys., 20, 6455-6478, doi:10.5194/acp-20-6455-2020.
- Veres, P., et al. (2020), Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere, Proc. Natl. Acad. Sci., 117, doi:10.1073/pnas.1919344117.
- Brock, C., et al. (2019), Aerosol size distributions during the Atmospheric Tomography Mission (ATom): methods, uncertainties, and data products, Atmos. Meas. Tech., 12, 3081-3099, doi:10.5194/amt-12-3081-2019.
- Hodshire, A., et al. (2019), The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings, Atmos. Chem. Phys., 19, 3137-3160, doi:10.5194/acp-19-3137-2019.
- Jeong, D., et al. (2019), Integration of airborne and ground observations of nitryl chloride in the Seoul metropolitan area and the implications on regional oxidation capacity during KORUS-AQ 2016, Atmos. Chem. Phys., 19, 12779-12795, doi:10.5194/acp-19-12779-2019.
- Jimenez-Palacios, J., et al. (2019), ATom: L2 Measurements from CU High-Resolution Aerosol Mass Spectrometer (HR-AMS), Ornl Daac, doi:10.3334/ORNLDAAC/1716.
- Liao, J., et al. (2019), Towards a satellite formaldehyde – in situ hybrid estimate for organic aerosol abundance, Atmos. Chem. Phys., 19, 2765-2785, doi:10.5194/acp-19-2765-2019.
- Wang, S., et al. (2019), Atmospheric Acetaldehyde: Importance of Air‐Sea Exchange and a Missing Source in the Remote Troposphere, Geophys. Res. Lett., 46, doi:10.1029/2019GL082034.
- Williamson, C., et al. (2019), ATom: In Situ Tropical Aerosol Properties and Comparable Global Model Outputs, Ornl Daac, doi:10.3334/ORNLDAAC/1684.
- Williamson, C. J., et al. (2019), A large source of cloud condensation nuclei from new particle formation in the tropics, Nature, doi:10.1038/s41586-019-1638-9.
- Williamson, C., et al. (2019), A large source of cloud condensation nuclei from new particle formation in the tropics, Nature, 574, 399-403, doi:10.1038/s41586-019-1638-9.
- Brune, W. H., et al. (2018), Atmospheric oxidation in the presence of clouds during the Deep Convective Clouds and Chemistry (DC3) study, Atmos. Chem. Phys., 18, 14493-14510, doi:10.5194/acp-18-14493-2018.
- Hu, W., et al. (2018), Evaluation of the New Capture Vaporizer for Aerosol Mass Spectrometers (AMS): Elemental Composition and Source Apportionment of Organic Aerosols (OA), Anal. Chem., 2, 410−421, doi:10.1021/acsearthspacechem.8b00002.
- Katich, J., et al. (2018), Strong Contrast in Remote Black Carbon Aerosol Loadings Between the Atlantic and Pacific Basins, J. Geophys. Res., 123, 13,386-13,395, doi:10.1029/2018JD029206.
- Lamb, K., et al. (2018), Estimating Source Region Influences on Black Carbon Abundance, Microphysics, and Radiative Effect Observed Over South Korea, J. Geophys. Res., 123, 13,527-13,548, doi:10.1029/2018JD029257.
- Wofsy, S. C., et al. (2018), ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols, Ornl Daac, doi:10.3334/ORNLDAAC/1581.
- Fisher, J. A., et al. (2016), Organic nitrate chemistry and its implications for nitrogen budgets in an isoprene- and monoterpene-rich atmosphere: constraints from aircraft (SEAC4RS) and ground-based (SOAS) observations in the Southeast US, Atmos. Chem. Phys., 16, 5969-5991, doi:10.5194/acp-16-5969-2016.
- Barth, M. C., et al. (2015), The Deep Convective Clouds And Chemistry (Dc3) Field Campaign, Bull. Am. Meteorol. Soc., 1281-1310.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.