Business Address:
Science and Technology Branch
Toronto, ON M3H5T4
CanadaFirst Author Publications:
- Korolev, A., et al. (2023), Mixed-Phase Clouds: Progress and Challenges, Korolev Et Al., 5, 5.1, doi:10.1175/AMSMONOGRAPHS-D-17-0001.1.
- Korolev, A., and J. Milbrandt (2022), How are mixed-phase clouds mixed?, Geophys. Res. Lett., 49, org/10.1029/2022GL099578.
- Korolev, A., et al. (2022), Observation of secondary ice production in clouds at low temperatures, Atmos. Chem. Phys., doi:10.5194/acp-22-13103-2022.
- Korolev, A., et al. (2020), A new look at the environmental conditions favorable to secondary ice production, Atmos. Chem. Phys., 20, 1391-1429, doi:10.5194/acp-20-1391-2020.
- Korolev, A., and T. Leisner (2020), Review of experimental studies of secondary ice production, Atmos. Chem. Phys., 20, 11767-11797, doi:10.5194/acp-20-11767-2020.
- Korolev, A., et al. (2011), Small Ice Particles in Tropospheric Clouds: Fact or Artifact? Airborne Icing Instrumentation Evaluation Experiment, Bull. Amer. Meteor. Soc., 92, 967-973, doi:10.1175/2010BAMS3141.1.
- Korolev, A., and P. R. Field (2008), The Effect of Dynamics on Mixed-Phase Clouds: Theoretical Considerations, J. Atmos. Sci., 65, 66-86, doi:10.1175/2007JAS2355.1.
- Korolev, A. (2007), Limitations of the Wegener–Bergeron–Findeisen Mechanism in the Evolution of Mixed-Phase Clouds, J. Atmos. Sci., 64, 3372-3375, doi:10.1175/JAS4035.1.
- Korolev, A., et al. (1998), The Nevzorov airborne hotwire LWC-TWC probe: Principles of operation and performance characteristics, J. Atmos. Oceanic Technol., 15, 1495-1510.
Co-Authored Publications:
- Ladino, L. A., et al. (2017), On the role of ice-nucleating aerosol in the formation of ice particles in tropical mesoscale convective systems, Geophys. Res. Lett., 44, 1574-1582, doi:10.1002/2016GL072455.
- Ackerman, A. S., et al. (2015), High ice water content at low radar reflectivity near deep convection – Part 2: Evaluation of microphysical pathways in updraft parcel simulations, Atmos. Chem. Phys., 15, 11729-11751, doi:10.5194/acp-15-11729-2015.
- Fridlind, A. M., et al. (2015), High ice water content at low radar reflectivity near deep convection – Part 1: Consistency of in situ and remote-sensing observations with stratiform rain column simulations, Atmos. Chem. Phys., 15, 11713-11728, doi:10.5194/acp-15-11713-2015.
- Ovchinnikov, M., et al. (2014), Intercomparison of large-eddy simulations of Arctic mixed-phase clouds: Importance of ice size distribution assumptions, J. Adv. Modeling Earth Syst., 6, 223-248, doi:10.1002/2013MS000282.
- Baumgardner, D., et al. (2012), In Situ, Airborne Instrumentation: Addressing and Solving Measurement Problems in Ice Clouds, Bull. Am. Meteorol. Soc., ES29-ES34.
- Avramov, A., et al. (2011), Toward ice formation closure in Arctic mixed‐phase boundary layer clouds during ISDAC, J. Geophys. Res., 116, D00T08, doi:10.1029/2011JD015910.
- McFarquhar, G., et al. (2011), Airborne Instrumentation Needs For Climate And Atmospheric Research, Bull. Am. Meteorol. Soc., 1193.
- Baker, B., et al. (2009), Drop Size Distributions and the Lack of Small Drops in RICO Rain Shafts, J. Appl. Meteor. Climat., 48, 616-623.
- Barker, H. W., et al. (2008), A comparison between CloudSat and aircraft data for a multilayer, mixed phase cloud system during the Canadian CloudSat-CALIPSO Validation Project, J. Geophys. Res., 113, D00A16, doi:10.1029/2008JD009971.
Note: Only publications that have been uploaded to the
ESD Publications database are listed here.