Warning message

Member access has been temporarily disabled. Please try again later.
The Ames Sunphotometer Satellite Group website is undergoing a major upgrade that began Friday, October 11th at 5:00 PM PDT. The new upgraded site will be available no later than Monday, October 21st. Until that time, the current site will be visible but logins are disabled.

Toward anthropogenic combustion emission constraints from space-based analysis...

Silva, S. J., A. Arellano, and H. Worden (2013), Toward anthropogenic combustion emission constraints from space-based analysis of urban CO2/CO sensitivity, Geophys. Res. Lett., 40, 4971-4976, doi:10.1002/grl.50954.
Abstract: 

We explore the value of multispectral CO retrievals from NASA/Terra Measurement of Pollution In The Troposphere (MOPITT v5), along with Atmospheric CO2 Observations from Space (ACOSv2.9) CO2 retrievals from the Japan Aerospace Exploration Agency Greenhouse Gases Observing Satellite (GOSAT), for characterizing emissions from anthropogenic combustion. We use these satellite retrievals to analyze observed CO2/CO enhancement ratios (ΔCO2/ΔCO) over megacities. Since CO is coemitted with CO2 in anthropogenic combustion, the observed ΔCO2/ΔCO characterizes the general trend in combustion activity. Our analyses show patterns in ΔCO2/ΔCO that correspond well with the developed/developing status of megacities, and ΔCO2/ΔCO that agree well with available literature and emission inventories to approximately 20%. Comparisons with ΔCO2/ΔCO derived from Total Carbon Column Observing Network measurements show similar agreement, where some of the differences in observed ΔCO2/ΔCO are due to representativeness and limited GOSAT data. Our results imply potential constraints in anthropogenic combustion from GOSAT/MOPITT, particularly in augmenting our carbon monitoring systems.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Atmospheric Composition Modeling and Analysis Program (ACMAP)