Cloud Aerosol and Precipitation Spectrometer - U Vienna

Hawkeye

Hawkeye is a combination cloud particle probe. The instrument includes four probes in one.

Probe 1: The Fast Cloud Droplet Probe (FCDP) records individual particle statistics and digitizes waveform.

Probes 2-3: 2D-S 10-µm channel and 50-µm channel also trigger CPI.

Probe 4: 400 frame per second Cloud Particle Imager (CPI).

Instrument Type: 
Instrument Team: 

2DC Hydrometeor Imaging Probe

The 2DC probe records images of hydrometeors that pass through its sample volume, and so provides measurements of ice or water drop concentration, their size distribution, and their shapes. It obtains these images by recording the status (illuminated or shadowed) of a 64-element photodiode array as the shadow of the hydrometeor passes over the array. Probes with 25 µm and 10 µm resolution are available; at 25 µm, the 64-element array provides a sample of about 8 L per 100 m of flight. Images of individual particles are recorded, usually with no loss except at very high concentrations. Special records containing these images in digital form are recorded as needed, so they will be interspersed with the standard periodically sampled records. The 2DC probe was originally manufactured by Particle Measuring Systems, Inc., but the electronics have been replaced with high-speed circuitry matched to the flight speed of the G-V, data transmission has been changed to USB-2, the photodiode array was replaced with one having twice as many elements and supporting faster response, and other changes were made to the optics and electronics of the G-V 2DCs.

Because the depth of field reduces to less than the distance between the arms that define the sample aperture for particle sizes less than about 125 µm, and because diffraction makes the sizes of such small particles hard to determine, the probe has limited ability to measure concentrations at sizes less than about 100 µm, even though it has resolution smaller than this. The array size and optics limit the largest size that can be imaged fully to 1600 µm for the 25-µm-resolution probe. The probe also has been shown to measure falsely high concentrations as a result of shattering (Korolev et al., 2011), so new tips have been installed that reduce but do not eliminate the effects of shattering.

Instrument Type: 
Aircraft: 
NSF G-V
Instrument Team: 

Continuous Flow Diffusion Chambers

The continuous flow diffusion chambers are oriented for vertical flow through an annular space. They are constructed of two cylindrical, thin, ebonized copper walls that are separated by approximately 1.1 cm. The walls of the CFDC are force-cooled either by circulating coolant through copper tubing coils surrounding the outer wall and inside the inner wall (laboratory CFDC) or by using these same coolant coils as evaporators for refrigeration compressor units (aircraft CFDC). In operation, the walls are coated with ice, achieved by flooding the chamber with water. An inlet manifold directs sample air containing aerosol particles into the center of a laminar flow field where the sample is surrounded on either side by particle-free sheath air (or N2). By varying the set temperatures of the two walls, the warm wall provides a vapor source to the cold wall so that water vapor and temperature fields are created. These fields and airflow determine the conditions of exposure for the aerosols during their typical 5 to 20 s residence time in the CFDC. Ice particles grow to relatively large sizes compared to aerosol particles and are distinguished from them using an optical particle counter (0.4 to 20 mm) at the base of the CFDC.

The aircraft CFDC transitions to a hydrphobic warm wall surface in the lower third of the device so that liquid water drops formed at RH>100% will evaporate, leaving only ice crystals as large particles. The only other physical differences between the two devices is the fact that the laboratory CFDC is approximately 50% longer, providing additional ice crystal growth time at ambient lab pressures and the laboratory device has associated equipment for aerosol generation and preconditioning.

An impactor is sometimes used following the optical counter to collect ice crystals onto specialized transmission electron microscope (TEM) grids for analysis of the residual particles. Calculations of air flow, temperature, and humidity are made assuming steady-state conditions (Rogers, 1988). The temperature and supersaturation range are determined by wall temperatures and air flow.

Instrument Type: 
Aircraft: 
Citation, DC-8 - AFRC
Instrument Team: 

Precipitation Imaging Probe

This optical spectrometer measures the size and shape of particles from 100 to 6200 µm in diameter.

Instrument Type: 
Aircraft: 
Instrument Team: 

Cloud Aerosol and Precipitation Spectrometer

Measures concentration and records images of cloud particles from approximately 50-1600 microns in diameter with a resolution of 25 microns per pixel. Measures cloud droplet and aerosol concentrations within the size range of 0.5-50 microns.

The three DMT instruments included in the CAPS are the Cloud Imaging Probe (CIP), the Cloud and Aerosol Spectrometer (CAS), and the Hotwire Liquid Water Content Sensor (Hotwire LWC).

The CIP, which measures larger particles, operates as follows. Shadow images of particles passing through a collimated laser beam are projected onto a linear array of 64 photodetectors. The presence of a particle is registered by a change in the light level on each diode. The registered changes in the photodetectors are stored at a rate consistent with probe velocity and the instrument’s size resolution. Particle images are reconstructed from individual “slices,” where a slice is the state of the 64-element linear array at a given moment in time. A slice must be stored each time interval that the particle advances through the beam a distance equal to the resolution of the probe. Optional grayscale imaging gives three levels of shadow recording on each photodetector, allowing more detailed information on the particles.

The CAS, which measures smaller particles, relies on light-scattering rather than imaging techniques. Particles scatter light from an incident laser, and collecting optics guide the light scattered in the 4° to 12° range into a forward-sizing photodetector. This light is measured and used to infer particle size. Backscatter optics also measure light in the 168° to 176° range, which allows determination of the real component of a particle’s refractive index for spherical particles.

The Hotwire LWC instrument estimates liquid water content using a heated sensing coil. The system maintains the coil at a constant temperature, usually 125 °C, and measures the power necessary to maintain this temperature. More power is needed to maintain the temperature as droplets evaporate on the coil surface and cool the surface and surrounding air. Hence, this power reading can be used to estimate LWC. Both the LWC design and the optional PADS software contain features to ensure the LWC reading is not affected by conductive heat loss.

Instrument Team: 

High Volume Precipitation Spectrometer

SPEC previously built the Version 1 and Version 2 HVPS probes that have now been discontinued due to obsolete parts and significant advances in technology. The HVPS-3 uses the same 128-photodiode array and electronics that are used in the 2D-S and 2D-128 probes. The optics are configured for 150 micron pixel resolution, resulting in a maximum field of view of 1.92 cm (i.e., particles up to 1.92 cm are completely imaged, although even larger particles can be sized in the direction of flight).

Sample volume of the HVPS-3 is 400 L s-1 at 100 m s-1. The 2D-S or 2D-128 and HVPS make an excellent pair of probes that completely image particles from 10 microns to 1.92 cm.

Aircraft: 
Instrument Team: 

Cloud Droplet Probe

The Cloud Droplet Probe (CDP), manufactured by Droplet Measurement Technologies, measures the concentration and size distribution of cloud droplets in the size range from 2-50 µm. The instrument counts and sizes individual droplets by detecting pulses of light scattered from a laser beam in the near-forward direction, using a sample area of 0.24 mm2 or a sample rate of 48 cm3 at a flight speed of 200 m/s. The probe is mounted in an underwing canister and is designed to operate at up to 200 m/s; the G-V often exceeds this flight speed, but usually not in penetrations of clouds containing cloud droplets. Droplet sizes are accumulated in 30 bins with variable sizes, as specied in the header of the netCDF data files. Measurements are usually provided at a rate of 1 Hz in the standard data files but can be made available at 10 Hz in special high-rate processing. The instrument is similar to, and might be considered a high-speed replacement for, the Forward Scattering Spectrometer Probe. At high droplet concentration (> 500 cm-3), coincidence losses have been observed with this probe, and these are especially serious at G-V flight speeds. The probe is designed for cloud droplets, and its response to ice crystals is not intended to be quantitative; measurements in ice clouds should not be used except as qualitative indications of cloud.

Instrument Type: 
Instrument Team: 

Small Ice Detector

Instrument Type: 
Aircraft: 
Instrument Team: 

Differential mobility

Instrument Type: 
Aircraft: 
Instrument Team: 

Pages

Subscribe to RSS - Particle size distribution