Publications for Orbiting Carbon Observatory-2 (OCO-2)

Publication Citation
Long, D.A., Z.D. Reed, A.J. Fleisher, J. Mendonca, S. Roche, and J.T. Hodges (2020), High‐Accuracy Near‐Infrared Carbon Dioxide Intensity Measurements to Support Remote Sensing, Geophys. Res. Lett., 47, e2019GL086344, doi:10.1029/2019GL086344.
Lu, X., X. Cheng, X. Li, and J. Tang (2018), Short Communication Opportunities and challenges of applications of satellite-derived sun-induced fluorescence at relatively high spatial resolution, Science of the Total Environment, 619–620, 649-653, doi:10.1016/j.scitotenv.2017.11.158.
Luus, K.A., R. Commane, N.C. Parazoo, J. Benmergui, E.S. Euskirchen, C. Frankenberg, J. Joiner, J. Lindaas, C.E. Miller, W.C. Oechel, D. Zona, S. Wofsy, and J.C. Lin (2017), Tundra photosynthesis captured by satellite-observed solar-induced chlorophyll fluorescence, Geophys. Res. Lett., 44, 1564-1573, doi:10.1002/2016GL070842.
Magney, T.S., D.R. Bowling, B.A. Logan, K. Grossmann, J. Stutz, P.D. Blanken, S.P. Burns, R. Cheng, M.A. Garcia, P. Kӧhler, S. Lopez, N.C. Parazoo, B. Raczka, D. Schimel, and C. Frankenberg (2019), Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence, Proc. Natl. Acad. Sci., doi:10.
Massie, S.T., K.S. Schmidt, A. Eldering, and D. Crisp (2017), Observational evidence of 3-D cloud effects in OCO-2 CO2 retrievals, J. Geophys. Res., 122, 7064-7085, doi:10.1002/2016JD026111.
Menang, K.P. (2019), Sensitivity of near-infrared transmittance calculations for remote sensing applications to recent changes in spectroscopic information, The Author. Atmospheric Science Letters, 20, e942, doi:10.1002/asl.942.
Menang, K.P. (2019), RESEARCH ARTICLE Updates of HITRAN spectroscopic database from 2008 to 2016 and implications for near-infrared radiative transfer calculations, Q. J. R. Meteorol. Soc., 7, 1-10, doi:10.1002/qj.3498.
Merrelli, A., R. Bennartz, C.W. O’Dell, and T.E. Taylor (2015), Estimating bias in the OCO-2 retrieval algorithm caused by 3-D radiation scattering from unresolved boundary layer clouds, Atmos. Meas. Tech., 8, 1641-1656, doi:10.5194/amt-8-1641-2015.
Michalak, A.M., N.A. Randazzo, and F. Chevallier (2017), Diagnostic methods for atmospheric inversions of long-lived greenhouse gases, Atmos. Chem. Phys., 17, 7405-7421, doi:10.5194/acp-17-7405-2017.
Miller, S.M., and A.M. Michalak (2020), The impact of improved satellite retrievals on estimates of biospheric carbon balance, Atmos. Chem. Phys., 20, 323-331, doi:10.5194/acp-20-323-2020.
Miller, S.M., A.M. Michalak, V. Yadav, and J.M. Tadić (2018), Characterizing biospheric carbon balance using CO2 observations from the OCO-2 satellite, Atmos. Chem. Phys., 18, 6785-6799, doi:10.5194/acp-18-6785-2018.
Nelson, R.R., C.W. O’Dell, T.E. Taylor, L. Mandrake, and M. Smyth (2016), The potential of clear-sky carbon dioxide satellite retrievals, Atmos. Meas. Tech., 9, 1671-1684, doi:10.5194/amt-9-1671-2016.
Nguyen, H., N. Cressie, and J. Hobbs (2019), National Institute for Applied Statistics Research Australia University of Wollongong, Australia Working Paper 03 -19, National Institute for Applied Statistics Research Australia, University of Wollongong.
O’Dell, C.W., A. Eldering, P.O. Wennberg, D. Crisp, M.R. Gunson, B. Fisher, C. Frankenberg, M. Kiel, H. Lindqvist, L. Mandrake, A. Merrelli, V. Natraj, R.R. Nelson, G.B. Osterman, V.H. Payne, T.E. Taylor, D. Wunch, B.J. Drouin, F. Oyafuso, A. Chang, J. McDuffie, M. Smyth, D.F. Baker, S. Basu, F. Chevallier, S.M.R. Crowell, L. Feng, P.I. Palmer, M. Dubey, O.E. García, D.W.T. Griffith, F. Hase, L.T. Iraci, R. Kivi, I. Morino, J. Notholt, H. Ohyama, C. Petri, C.M. Roehl, M.K. Sha, K. Strong, R. Sussmann, Y. Te, O. Uchino, and V.A. Velazco (2018), Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm, Atmos. Meas. Tech., 11, 6539-6576, doi:10.5194/amt-11-6539-2018.
Observatory, O.C., B. Zheng, F. Chevallier, P. Ciais, G. Broquet, Y. Wang, J. Lian, and Y. Zhao (2020), Observing carbon dioxide emissions over China’s cities with the, Atmos. Chem. Phys., doi:10.5194/acp-2020-123.
Odintsova, T.A., A.E. Fasci, L. Moretti, E.J. Zak, O.L. Polyansky, and A.J. Tennyson (2017), Highly accurate intensity factors of pure CO2 lines near 2 µm, J. Chem. Phys., 146, 244309, doi:10.1063/1.4989925.
Oh, Y.-S., S.T. Kenea, T.-Y. Goo, K.-S. Chung, J.-S. Rhee, M.-L. Ou, Y.-H. Byun, P.O. Wennberg, M. Kiel, J.P. DiGangi, G.S. Diskin, V.A. Velazco, and D.W.T. Griffith (2018), Characteristics of greenhouse gas concentrations derived from ground-based FTS spectra at Anmyeondo, South Korea, Atmos. Meas. Tech., 11, 2361-2374, doi:10.5194/amt-11-2361-2018.
Oshio, H., Y. Yoshida, T. Matsunaga, C.H.O. (oshio.haruki, and Go. nies.jp) (2019), On the zero-level offset in the GOSAT TANSO-FTS O2 A band and the quality of solar-induced chlorophyll fluorescence (SIF): comparison of SIF between GOSAT and OCO-2, Atmos. Meas. Tech., 12, 6721-6735, doi:10.5194/amt-12-6721-2019.
Oyafuso, F., V.H. Payne, B.J. Drouin, V.M. Devi, D.C. Benner, K. Sung, S. Yu, I.E. Gordon, R. Kochanov, Y. Tan, D. Crisp, E.J. Mlawer, and A. Guillaume (2017), High accuracy absorption coefficients for the Orbiting Carbon Observatory-2 (OCO-2) mission: Validation of updated carbon dioxide cross-sections using atmospheric spectra, J. Quant. Spectrosc. Radiat. Transfer, Observatory-2, mission, doi:10.1016/j.jqsrt.2017.06.012i.
Palmer, P.I., L. Feng, D. Baker, F. Chevallier, H. Bösch, and P. Somkuti (2020), Net carbon emissions from African biosphere dominate pan-tropical atmospheric CO2 signal, Nature, doi:10.1038/s41467-019-11097-w.