Publications for Orbiting Carbon Observatory-2 (OCO-2)
| Publication Citation |
|---|
| Long, D.A., Z.D. Reed, A.J. Fleisher, J. Mendonca, S. Roche, and J.T. Hodges (2020), High‐Accuracy Near‐Infrared Carbon Dioxide Intensity Measurements to Support Remote Sensing, Geophys. Res. Lett., 47, e2019GL086344, doi:10.1029/2019GL086344. |
| Lu, X., X. Cheng, X. Li, and J. Tang (2018), Short Communication Opportunities and challenges of applications of satellite-derived sun-induced fluorescence at relatively high spatial resolution, Science of the Total Environment, 619–620, 649-653, doi:10.1016/j.scitotenv.2017.11.158. |
| Luus, K.A., R. Commane, N.C. Parazoo, J. Benmergui, E.S. Euskirchen, C. Frankenberg, J. Joiner, J. Lindaas, C.E. Miller, W.C. Oechel, D. Zona, S. Wofsy, and J.C. Lin (2017), Tundra photosynthesis captured by satellite-observed solar-induced chlorophyll fluorescence, Geophys. Res. Lett., 44, 1564-1573, doi:10.1002/2016GL070842. |
| Magney, T.S., D.R. Bowling, B.A. Logan, K. Grossmann, J. Stutz, P.D. Blanken, S.P. Burns, R. Cheng, M.A. Garcia, P. Kӧhler, S. Lopez, N.C. Parazoo, B. Raczka, D. Schimel, and C. Frankenberg (2019), Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence, Proc. Natl. Acad. Sci., doi:10. |
| Massie, S.T., K.S. Schmidt, A. Eldering, and D. Crisp (2017), Observational evidence of 3-D cloud effects in OCO-2 CO2 retrievals, J. Geophys. Res., 122, 7064-7085, doi:10.1002/2016JD026111. |
| Menang, K.P. (2019), Sensitivity of near-infrared transmittance calculations for remote sensing applications to recent changes in spectroscopic information, The Author. Atmospheric Science Letters, 20, e942, doi:10.1002/asl.942. |
| Menang, K.P. (2019), RESEARCH ARTICLE Updates of HITRAN spectroscopic database from 2008 to 2016 and implications for near-infrared radiative transfer calculations, Q. J. R. Meteorol. Soc., 7, 1-10, doi:10.1002/qj.3498. |
| Merrelli, A., R. Bennartz, C.W. O’Dell, and T.E. Taylor (2015), Estimating bias in the OCO-2 retrieval algorithm caused by 3-D radiation scattering from unresolved boundary layer clouds, Atmos. Meas. Tech., 8, 1641-1656, doi:10.5194/amt-8-1641-2015. |
| Michalak, A.M., N.A. Randazzo, and F. Chevallier (2017), Diagnostic methods for atmospheric inversions of long-lived greenhouse gases, Atmos. Chem. Phys., 17, 7405-7421, doi:10.5194/acp-17-7405-2017. |
| Miller, S.M., and A.M. Michalak (2020), The impact of improved satellite retrievals on estimates of biospheric carbon balance, Atmos. Chem. Phys., 20, 323-331, doi:10.5194/acp-20-323-2020. |
| Miller, S.M., A.M. Michalak, V. Yadav, and J.M. Tadić (2018), Characterizing biospheric carbon balance using CO2 observations from the OCO-2 satellite, Atmos. Chem. Phys., 18, 6785-6799, doi:10.5194/acp-18-6785-2018. |
| Nelson, R.R., C.W. O’Dell, T.E. Taylor, L. Mandrake, and M. Smyth (2016), The potential of clear-sky carbon dioxide satellite retrievals, Atmos. Meas. Tech., 9, 1671-1684, doi:10.5194/amt-9-1671-2016. |
| Nguyen, H., N. Cressie, and J. Hobbs (2019), National Institute for Applied Statistics Research Australia University of Wollongong, Australia Working Paper 03 -19, National Institute for Applied Statistics Research Australia, University of Wollongong. |
| O’Dell, C.W., A. Eldering, P.O. Wennberg, D. Crisp, M.R. Gunson, B. Fisher, C. Frankenberg, M. Kiel, H. Lindqvist, L. Mandrake, A. Merrelli, V. Natraj, R.R. Nelson, G.B. Osterman, V.H. Payne, T.E. Taylor, D. Wunch, B.J. Drouin, F. Oyafuso, A. Chang, J. McDuffie, M. Smyth, D.F. Baker, S. Basu, F. Chevallier, S.M.R. Crowell, L. Feng, P.I. Palmer, M. Dubey, O.E. García, D.W.T. Griffith, F. Hase, L.T. Iraci, R. Kivi, I. Morino, J. Notholt, H. Ohyama, C. Petri, C.M. Roehl, M.K. Sha, K. Strong, R. Sussmann, Y. Te, O. Uchino, and V.A. Velazco (2018), Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm, Atmos. Meas. Tech., 11, 6539-6576, doi:10.5194/amt-11-6539-2018. |
| Observatory, O.C., B. Zheng, F. Chevallier, P. Ciais, G. Broquet, Y. Wang, J. Lian, and Y. Zhao (2020), Observing carbon dioxide emissions over China’s cities with the, Atmos. Chem. Phys., doi:10.5194/acp-2020-123. |
| Odintsova, T.A., A.E. Fasci, L. Moretti, E.J. Zak, O.L. Polyansky, and A.J. Tennyson (2017), Highly accurate intensity factors of pure CO2 lines near 2 µm, J. Chem. Phys., 146, 244309, doi:10.1063/1.4989925. |
| Oh, Y.-S., S.T. Kenea, T.-Y. Goo, K.-S. Chung, J.-S. Rhee, M.-L. Ou, Y.-H. Byun, P.O. Wennberg, M. Kiel, J.P. DiGangi, G.S. Diskin, V.A. Velazco, and D.W.T. Griffith (2018), Characteristics of greenhouse gas concentrations derived from ground-based FTS spectra at Anmyeondo, South Korea, Atmos. Meas. Tech., 11, 2361-2374, doi:10.5194/amt-11-2361-2018. |
| Oshio, H., Y. Yoshida, T. Matsunaga, C.H.O. (oshio.haruki, and Go. nies.jp) (2019), On the zero-level offset in the GOSAT TANSO-FTS O2 A band and the quality of solar-induced chlorophyll fluorescence (SIF): comparison of SIF between GOSAT and OCO-2, Atmos. Meas. Tech., 12, 6721-6735, doi:10.5194/amt-12-6721-2019. |
| Oyafuso, F., V.H. Payne, B.J. Drouin, V.M. Devi, D.C. Benner, K. Sung, S. Yu, I.E. Gordon, R. Kochanov, Y. Tan, D. Crisp, E.J. Mlawer, and A. Guillaume (2017), High accuracy absorption coefficients for the Orbiting Carbon Observatory-2 (OCO-2) mission: Validation of updated carbon dioxide cross-sections using atmospheric spectra, J. Quant. Spectrosc. Radiat. Transfer, Observatory-2, mission, doi:10.1016/j.jqsrt.2017.06.012i. |
| Palmer, P.I., L. Feng, D. Baker, F. Chevallier, H. Bösch, and P. Somkuti (2020), Net carbon emissions from African biosphere dominate pan-tropical atmospheric CO2 signal, Nature, doi:10.1038/s41467-019-11097-w. |