Publications for CALIPSO
| Publication Citation |
|---|
| Wen, G., A. Marshak, R.C. Levy, L.A. Remer, N.G. Loeb, T. Várnai, and R.F. Cahalan (2013), Improvement of MODIS aerosol retrievals near clouds, J. Geophys. Res., 118, 1-14, doi:10.1002/jgrd.50617. |
| Wen, G., A. Marshak, T. Várnai, and R. Levy (2016), Testing the two-layer model for correcting near-cloud reflectance enhancement using LES/SHDOM-simulated radiances, J. Geophys. Res., 121, 9661-9674, doi:10.1002/2016JD025021. |
| Winker, D.M. (2024), 25 Years of CALIPSO, Isbn, 978-3-031-53618-2, in Space-based Lidar Remote Se, doi:10.1007/978-3-031-53618-2. |
| Winker, D.M., J.L. Tackett, B.J. Getzewich, Z. Liu, M.A. Vaughan, and R.R. Rogers (2013), The global 3-D distribution of tropospheric aerosols as characterized by CALIOP, Atmos. Chem. Phys., 13, 3345-3361, doi:10.5194/acp-13-3345-2013. |
| Winker, D., H. Chepfer, V. Noel, and X. Cai (2017), Observational Constraints on Cloud Feedbacks: The Role of Active Satellite Sensors, Surv. Geophys., 38, 1483-1508, doi:10.1007/s10712-017-9452-0. |
| Wu, M., X. Liu, K. Yang, T. Luo, Z. Wang, C. Wu, K. Zhang, H. Yu, and A. Darmenov (2019), Modeling Dust in East Asia by CESM and Sources of Biases, J. Geophys. Res., 124, 8043-8064, doi:10.1029/2002JD002775). |
| Yang, W., A. Marshak, T. Várnai, O.V. Kalashnikova, and A.B. Kostinski (2012), CALIPSO observations of transatlantic dust: vertical stratification and effect of clouds, Atmos. Chem. Phys., 12, 11339-11354, doi:10.5194/acp-12-11339-2012. |
| Yang, W., A. Marshak, T. Várnai, and Z. Liu (2012), Effect of CALIPSO cloud–aerosol discrimination (CAD) confidence levels on observations of aerosol properties near clouds, Atmos. Res., 116, 134-141, doi:10.1016/j.atmosres.2012.03.013. |
| Yang, W., A. Marshak, T. Varnai, and R. Wood (2014), CALIPSO observations of near-cloud aerosol properties as a function of cloud fraction, Geophys. Res. Lett., 41, doi:10.1002/2014GL061896. |
| Yorks, J.E., M. McGill, S. Rodier, M. Vaughan, Y. Hu, and D. Hlavka (2009), Radiative effects of African dust and smoke observed from Clouds and the Earth’s Radiant Energy System (CERES) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data, J. Geophys. Res., 114, D00H04, doi:10.1029/2009JD012000. |
| Yorks, J.E., D.L. Hlavka, M.A. Vaughan, M.J. McGill, W.D. Hart, S. Rodier, and R. Kuehn (2011), Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: Spatial properties, J. Geophys. Res., 116, D19207, doi:10.1029/2011JD015942. |
| Yu, H., and Z. Zhang (2013), New Directions: Emerging satellite observations of above-cloud aerosols and direct radiative forcingq, Atmos. Environ., 72, 36-40, doi:10.1016/j.atmosenv.2013.02.017. |
| Yu, H., M. Chin, D.M. Winker, A.H. Omar, Z. Liu, C. Kittaka, and T. Diehl (2010), Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: Regional and seasonal variations, J. Geophys. Res., 115, D00H30, doi:10.1029/2009JD013364. |
| Yu, H., Y. Zhang, M. Chin, Z. Liu, A. Omar, L.A. Remer, Y. Yang, T. Yuan, and J. Zhang (2012), An integrated analysis of aerosol above clouds from A-Train multi-sensor measurements, Remote Sensing of Environment, 121, 125-131, doi:10.1016/j.rse.2012.01.011. |
| Yu, H., M. Chin, T. Yuan, H. Bian, L.A. Remer, J.M. Prospero, A. Omar, D. Winker, Y. Yang, Y. Zhang, Z. Zhang, and C. Zhao (2015), The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations, Geophys. Res. Lett., 42, 1984-1991, doi:10.1002/2015GL063040. |
| Yu, H., M. Chin, H. Bian, T.L. Yuan, J.M. Prospero, A.H. Omar, L.A. Remer, D.M. Winker, Y. Yang, Y. Zhang, and Z. Zhang (2015), Quantification of Trans-Atlantic Dust Transport from Seven-year (2007-2013) Record of CALIPSO Lidar Measurements, " Remote Sens. Environ, 159, 232-249, doi:10.1016/j.rse.2014.12.010. |
| Yu, H., Q. Tan, M. Chin, L.A. Remer, R.A. Kahn, H. Bian, D. Kim, Z. Zhang, T. Yuan, A.H. Omar, D.M. Winker, R.C. Levy, O. Kalashnikova, L. Crepeau, V. Capelle, and A. Chédin (2019), Estimates of African Dust Deposition Along the Trans‐ Atlantic Transit Using the Decadelong Record of Aerosol Measurements from CALIOP, MODIS, MISR, and IASI, J. Geophys. Res., 124, 7975-7996, doi:10.1029/2019JD030574. |
| Yu, H., Q. Tan, L. Zhou, Y. Zhou, H. Bian, M. Chin, C.L. Ryder, R.C. Levy, Y. Pradhan, Y. Shi, Q. Song, Z. Zhang, P.R. Colarco, D. Kim, L.A. Remer, T. Yuan, O. Mayol-Bracero, and B.N. Holben (2021), Observation and modeling of the historic “Godzilla” African dust intrusion into the Caribbean Basin and the southern US in June 2020, Atmos. Chem. Phys., 21, 12359-12383, doi:10.5194/acp-21-12359-2021. |
| Zamora, L.M., and R.A. Kahn (2020), Saharan dust aerosols change deep convective cloud prevalence, possibly by inhibiting marine new particle formation, J. Climate, 33, 9467-9477, doi:10.1175/JCLI-D-20-0083.1. |
| Zhang, D., Z. Wang, A. Heymsfield, J. Fan, D. Liu, and M. Zhao (2012), Quantifying the impact of dust on heterogeneous ice generation in midlevel supercooled stratiform clouds, Geophys. Res. Lett., 39, L18805, doi:10.1029/2012GL052831. |