Publications for ATom
| Publication Citation |
|---|
| Pieber, S.M., I.E. Haddad, J.G. Slowik, M.R. Canagaratna, J.T. Jayne, S.M. Platt, C. Bozzetti, K.R. Daellenbach, R. Fröhlich, A. Vlachou, F. Klein, J. Dommen, B. Miljevic, J.L. Jimenez, D.R. Worsnop, U. Baltensperger, and A.S.H. Prévôt (2016), Inorganic Salt Interference on CO2+ in Aerodyne AMS and ACSM Organic Aerosol Composition Studies, Environ. Sci. Technol., 50, 10494-10503, doi:10.1021/acs.est.6b01035. |
| Pimlott, M.A., R.J. Pope, B.J. Kerridge, B.G. Latter, D.S. Knappett, D.E. Heard, L.J. Ventress, R. Siddans, W. Feng, and M.P. Chipperfield (2022), Investigating the global OH radical distribution using steady-state approximations and satellite data, Atmos. Chem. Phys., 22, 10467-10488, doi:10.5194/acp-22-10467-2022. |
| Pozzer, A., S.F. Reifenberg, V. Kumar, B. Franco, M. Kohl, D. Taraborrelli, S. Gromov, S. Ehrhart, P. Jöckel, R. Sander, V. Fall, S. Rosanka, V. Karydis, D. Akritidis, T. Emmerichs, M. Crippa, D. Guizzardi, J.W. Kaiser, L. Clarisse, A. Kiendler-Scharr, H. Tost, and A. Tsimpidi (2022), Simulation of organics in the atmosphere: evaluation of EMACv2.54 with the Mainz Organic Mechanism (MOM) coupled to the ORACLE (v1.0) submodel, Geosci. Model. Dev., 15, 2673-2710, doi:10.5194/gmd-15-2673-2022. |
| Prather, M.J., X. Zhu, C.M. Flynn, S.A. Strode, J.M. Rodriguez, S.D. Steenrod, J. Liu, J.-F. Lamarque, A.M. Fiore, L.W. Horowitz, J. Mao, L.T. Murray, D.T. Shindell, and S.C. Wofsy (2017), Global atmospheric chemistry – which air matters, Atmos. Chem. Phys., 17, 9081-9102, doi:10.5194/acp-17-9081-2017. |
| Prather, M.J., C.M. Flynn, X. Zhu, S.D. Steenrod, S.A. Strode, A.M. Fiore, G. Correa, L.T. Murray, and J.-F. Lamarque (2018), How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition, Atmos. Meas. Tech., 11, 2653-2668, doi:10.5194/amt-11-2653-2018. |
| Prather, M.J., H. Guo, and X. Zhu (2023), Deconstruction of tropospheric chemical reactivity using aircraft measurements: the Atmospheric Tomography Mission (ATom) data, Earth Syst. Sci. Data, 15, 1-51, doi:10.5194/essd-15-1-2023. |
| Ranjithkumar, A., H. Gordon, C. Williamson, A. Rollins, K. Pringle, A. Kupc, N.L. Abraham, C. Brock, and K. Carslaw (2021), Constraints on global aerosol number concentration, SO2 and condensation sink in UKESM1 using ATom measurements, Atmos. Chem. Phys., 21, 4979-5014, doi:10.5194/acp-21-4979-2021. |
| Rickly, P.S., L. Xu, J.D. Crounse, P.O. Wennberg, and A.W. Rollins (2021), Improvements to a laser-induced fluorescence instrument for measuring SO2 – impact on accuracy and precision, Atmos. Meas. Tech., 14, 2429-2439, doi:10.5194/amt-14-2429-2021. |
| Roberts, J.M., S. Wang, P.R. Veres, J.A. Neuman, M.A. Robinson, I. Bourgeois, J. Peischl, T.B. Ryerson, C.R. Thompson, and H.M. Allen (2023), Observations of cyanogen bromide (BrCN) in the global troposphere and their relation to polar surface O3 destruction., doi:10.5194/egusphere-2023-860 (submitted). |
| Roberts, J.M., S. Wang, P.R. Veres, J.A. Neuman, M.A. Robinson, I. Bourgeois, J. Peischl, T.B. Ryerson, C.R. Thompson, H.M. Allen, J.D. Crounse, P.O. Wennberg, S.R. Hall, K. Ullmann, S. Meinardi, I.J. Simpson, and D. Blake (2024), Observations of cyanogen bromide (BrCN) in the global troposphere and their relation to polar surface O3 destruction, Atmos. Chem. Phys., doi:10.5194/acp-24-3421-2024. |
| Roozitalab, B., L.K. Emmons, R.S. Hornbrook, D.E. Kinnison, R.P. Fernandez, Q. Li, A. Saiz-Lopez, R. Hossaini, C.A. Cuevas, A.J. Hills, S.A. Montzka, D.R. Blake, W.H. Brune, P.R. Veres, and E.C. Apel (2024), Measurements and Modeling of the Interhemispheric Differences of Atmospheric Chlorinated Very Short-Lived Substances, J. Geophys. Res., doi:10.1029/2023JD039518. |
| Salzmann, M., S. Ferrachat, C. Tully, S. Münch, D. Watson-Parris, D. Neubauer, C.S.-L. Drian, S. Rast, B. Heinold, T. Crueger, R. Brokopf, J. Mülmenstädt, J. Quaas, H. Wan, K. Zhang, U. Lohmann, P. Stier, and I. Tegen (2022), The Global Atmosphere-aerosol Model ICON-A-HAM2.3– Initial Model Evaluation and Effects of Radiation Balance Tuning on Aerosol Optical Thickness, J. Adv. Modeling Earth Syst., 22(9), 6347-6364, doi:10.1029/2021MS002699. |
| Schill, G.P., K.D. Froyd, H. Bian, A. Kupc, C. Williamson, C.A. Brock, E. Ray, R.S. Hornbrook, A.J. Hills, E. Apel, M. Chin, P.R. Colarco, and D. Murphy (2020), Widespread biomass burning smoke throughout the remote troposphere, Nat. Geosci., 13, 422-427, doi:10.1038/s41561-020-0586-1. |
| Schuck, T.J., J. Degen, E. Hintsa, P. Hoor, M. Jesswein, T. Keber, D. Kunkel, F. Moore, F. Obersteiner, M. Rigby, T. Wagenhäuser, L.M. Western, A. Zahn, and A. Engel (2024), The interhemispheric gradient of SF6 in the upper troposphere, Atmos. Chem. Phys., doi:10.5194/acp-24-689-2024. |
| Schueneman, M.K., B.A. Nault, P. Campuzano-Jost, D.S. Jo, D.A. Day, J.C. Schroder, B.B. Palm, A. Hodzic, J.E. Dibb, and J.L. Jimenez (2021), Aerosol pH Indicator and Organosulfate Detectability from Aerosol Mass Spectrometry Measurements, Atmos. Meas. Tech., doi:10.5194/amt-2020-339. |
| Sekiya, T., Y. Kanaya, K. Sudo, F. Taketani, Y. Iwamoto, M.N. Aita, A. Yamamoto, and K. Kawamoto (2020), Global Bromine- and Iodine-Mediated Tropospheric Ozone Loss Estimated Using the CHASER Chemical Transport Model, Sola, 16, 220−227, doi:10.2151/sola.2020-037. |
| Shah, V., D.J. Jacob, R. Dang, L.N. Lamsal, S.A. Strode, S.D. Steenrod, K.F. Boersma, S.D. Eastham, T.M. Fritz, C. Thompson, J. Peischl, I. Bourgeois, I.B. Pollack, B.A. Nault, R.C. Cohen, P. Campuzano-Jost, J.L. Jimenez, S.T. Andersen, L.J. Carpenter, T. Sherwen, and M.J. Evans (2023), Nitrogen oxides in the free troposphere: implications for tropospheric oxidants and the interpretation of satellite NO2 measurements, Atmos. Chem. Phys., doi:10.5194/acp-23-1227-2023. |
| Spanu, A., M. Dollner, J. Gasteiger, T.P. Bui, and B. Weinzierl (2020), Flow-induced errors in airborne in situ measurements of aerosols and clouds, Atmos. Meas. Tech., 13, 1963-1987, doi:10.5194/amt-13-1963-2020. |
| St. Clair, J.M., A.K. Swanson, S.A. Bailey, and T.F. Hanisco (2019), CAFE: a new, improved nonresonant laser-induced fluorescence instrument for airborne in situ measurement of formaldehyde, Atmos. Meas. Tech., 12, 4581-4590, doi:10.5194/amt-12-4581-2019. |
| Stephens, B.B., E.J. Morgan, J.D. Bent, R.F. Keeling, A.S. Watt, S.R. Shertz, and B.C. Daube (2021), Airborne measurements of oxygen concentration from the surface to the lower stratosphere and pole to pole, Atmos. Meas. Tech., 14, 2543-2574, doi:10.5194/amt-14-2543-2021. |