Airborne Third Generation Precipitation Radar

The APR-3 is a three frequency (13, 35, and 94 GHz), Doppler, dual-polarization radar system. It has a downward looking antenna that performs cross track scans, covering a swath that is +/- 25 to each side of the aircraft path. Additional features include: simultaneous dual-frequency, matched beam operation, simultaneous measurement of both like- and cross-polarized signals at both frequencies, Doppler operation, and real-time pulse compression (calibrated reflectivity data can be produced for large areas in the field during flight, if necessary).

Instrument Type: 
Point(s) of Contact: 

Airborne Rain Mapping Radar

The NASA/JPL Airborne Rain MApping Radar (ARMAR) was developed for the purpose of supporting future spaceborne rain radar systems, including the TRMM PR. ARMAR flies on the NASA DC-8 aircraft and operates at 13.8 GHz (Ku-band); it has Doppler and multi-polarization capabilities. It normally scans its antenna across track +/- 20 degrees but can also operate with its antenna pointing at a fixed angle. In addition to acquisition of radar parameters, it also spends a small fraction of its time operating as a radiometer, providing the 13.8 GHz brightness temperature. ARMAR is a pulse compression radar, meaning that it transmits an FM chirp signal of relatively long duration. The raw data is recorded directly to a high speed tape recorder. Post-processing occurs in two steps; first, the raw data is compressed by correlating it with the transmitted chirp, giving data comparable to a conventional short pulse radar. These data are used to form various second-order statistics, which are averaged over at least 100 (often several hundred) pulses. The second processing step takes the pulse-compressed and averaged data and performs calibration. This step uses data acquired by the system calibration loop during flight to convert the measured power to the equivalent radar reflectivity factor Ze. It also produces Doppler velocity and polarization observables, depending on the mode of operation during data collection.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

High Altitude Imaging Wind and Rain Airborne Profiler

HIWRAP (High-Altitude Imaging Wind and Rain Airborne Profiler) is a dual-frequency radar (Ka- and Ku-band), dual-beam (300 and 400 incidence angle), conical scan, solid-state transmitter-based system, designed for operation on the high-altitude (20 km) Global Hawk UAV. HIWRAP characteristics: Conically scanning; Simultaneous Ku/Ka-band & two beams @30 and 40 deg; Winds using precipitation & clouds as tracers; Ocean vector wind scatterometry; Map the 3-dimensional winds and precipitation within hurricanes and other severe weather events; Map ocean surface winds in clear to light rain regions using scatterometry.

Instrument Type: 
Point(s) of Contact: 

Airborne Second Generation Precipitation Radar

The APR-2 is a dual-frequency (13 GHz & 35 GHz), Doppler, dual-polarization radar system. It has a downward looking antenna that performs cross track scans, covering a swath that is +/- 25 to each side of the aircraft path. Additional features include: simultaneous dual-frequency, matched beam operation at 13.4 and 35.6 GHz (same as GPM Dual-Frequency Precipitation Radar), simultaneous measurement of both like- and cross-polarized signals at both frequencies, Doppler operation, and real-time pulse compression (calibrated reflectivity data can be produced for large areas in the field during flight, if necessary).

Instrument Type: 
Point(s) of Contact: 

Cloud Radar System

Clouds are a key element in the global hydrological cycle, and they have a significant role in the Earth’s energy budget through its influence on radiation budgets. Climate model simulations have demonstrated the importance of clouds in moderating and forcing the global energy budget. Despite the crucial role of clouds in climate and the breadth of our current knowledge, there are still many unanswered details. An improved understanding of the radiative impact of clouds on the climate system requires a comprehensive view of clouds that includes their physical dimensions, vertical and horizontal spatial distribution, detailed microphysical properties, and the dynamical processes producing them. However, the lack of fine-scale cloud data is apparent in current climate model simulations.

The Cloud Radar System (CRS) is a fully coherent, polarimeteric Doppler radar that is capable of detecting clouds and precipitation from the surface up to the aircraft altitude in the lower stratosphere. The radar is especially well suited for cirrus cloud studies because of its high sensitivity and fine spatial resolution.

Instrument Type: 
Point(s) of Contact: 

ER-2 Doppler Radar

EDOP is an X-band (9.6 GHz) Doppler radar nose-mounted in the ER-2. The instrument has two antennas: one nadir-pointing with pitch stabilization, and the other forward pointing. The general objectives of EDOP are the measurement of the vertical structure of precipitation and air motions in mesoscale precipitation systems and the development of spaceborne radar algorithms for precipitation estimation.

EDOP measures high-resolution time-height sections of reflectivity and vertical hydrometeor velocity (and vertical air motion when the hydrometeor fall speed and aircraft motions are removed). An additional capability on the forward beam permits measurement of the linear depolarization ratio (LDR) which provides useful information on orientation of the hydrometeors (i.e., the canting angle), hydrometeor phase, size, etc. The dual beam geometry has advantages over a single beam. For example, along-track horizontal air motions can be calculated by using the displacement of the ER-2 to provide dual Doppler velocities (i.e., forward and nadir beams) at a particular altitude.

EDOP is designed as a turn-key system with real-time processing on-board the aircraft. The RF system consists of a coherent frequency synthesizer which generates the transmitted and local oscillator frequencies used in the system, a pulse modulated (0.5 to 2.0 micro-second pulse) high gain 20 kW Traveling Wave Tube Amplifier which is coupled through the duplexer to the antenna, and the receiver which is comprised of a low-noise (~1dB) GaAs preamplifier followed by a mixer for each of the receive channels. The composite system generates a nadir oriented beam with a co-polarized receiver and a 350 forward directed beam with co- and cross- polarized receivers. The antenna design consists of two separate offset-fed parabolic antennas, with high polarization isolation feed horns, mounted in the nose radome of the ER-2. The antennas are 0.76 m diameter resulting in a 30 beamwidth and a spot size of about 1.2 km at the surface (assuming a 20 km aircraft altitude). The two beams operate simultaneously from a single transmitter.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Airborne Cloud Radar

The utility of millimeter-wave radars have been successfully used for cloud sensing and cloud microphysical studies. Studies of the impact of cloud feedbacks on the earth's radiation budget have underscored the importance of having a means of measuring the vertical distribution of clouds. Millimeter-wave radars can provide this information under most conditions, with high resolution, using a relatively compact system.

The Airborne Cloud Radar (ACR) for profiling cloud vertical structure was developed by the Jet Propulsion Laboratory and the University of Massachusetts in 1996. It is a W-band (95 GHz) polarimetric Doppler radar designed as a prototype airborne facility for the development of the 94 GHz Cloud Profiling Radar (CPR) for NASA CloudSat mission.

The ACR is a third-generation millimeter-wave cloud radar. While adopting the well tested techniques used by its predecessors, ACR also has a number of new features including an internal calibration loop, frequency agility, digital I and Q demodulation, digital matched filtering, and a W-band low-noise amplifier.

Instrument Type: 
Measurements: 
Aircraft: 
DC-8 - AFRC, P-3 Orion - WFF, Twin Otter (DOE)
Point(s) of Contact: 
Subscribe to RSS - Radar Reflectivity