Ultraviolet (UV) actinic fluxes measured with two Scanning Actinic Flux Spectroradiometers (SAFS) aboard the NASA DC-8 aircraft are compared with the Tropospheric Ultraviolet-Visible (TUV) model. The observations from 17 days in July–August 2004 (INTEX-NA field campaign) span a wide range of latitudes (28◦ N–53◦ N), longitudes (45◦ W–140◦ W), altitudes (0.1–11.9 km), ozone columns (285–353 DU), and solar zenith angles (2◦ –85◦ ). Both cloudy and cloud-free conditions were encountered. For cloud-free conditions, the ratio of observed to clearsky-model actinic flux (integrated from 298 to 422 nm) was 1.01±0.04, i.e. in good agreement with observations. The agreement improved to 1.00±0.03 for the down-welling component under clear sky conditions. In the presence of clouds and depending on their position relative to the aircraft, the up-welling component was frequently enhanced (by as much as a factor of 8 relative to cloud-free values) while the down-welling component showed both reductions and enhancements of up to a few tens of percent. Including all conditions, the ratio of the observed actinic flux to the cloud-free model value was 1.1±0.3 for the total, or separately 1.0±0.2 for the down-welling and 1.5±0.8 for the up-welling components. The correlations between up-welling and downwelling deviations are well reproduced with sensitivity studies using the TUV model, and are understood qualitatively with a simple conceptual model. This analysis of actinic flux observations illustrates opportunities for future evaluations of photolysis rates in three-dimensional chemistry-transport models.
Ultraviolet actinic flux in clear and cloudy atmospheres: model calculations and aircraft-based measurements
Palancar, G.G., R.E. Shetter, S.R. Hall, B.M. Toselli, and S. Madronich (2011), Ultraviolet actinic flux in clear and cloudy atmospheres: model calculations and aircraft-based measurements, Atmos. Chem. Phys., 11, 5457-5469, doi:10.5194/acp-11-5457-2011.
Abstract
PDF of Publication
Download from publisher's website
Research Program
Atmospheric Composition
Tropospheric Composition Program (TCP)