Publications for CMS
| Publication Citation |
|---|
| Chen, J., C. Viatte, J.K. Hedelius, T. Jones, J.E. Franklin, H. Parker, E.W. Gottlieb, P.O. Wennberg, M.K. Dubey, and S.C. Wofsy (2016), Differential column measurements using compact solar-tracking spectrometers, Atmos. Chem. Phys., 16, 8479-8498, doi:10.5194/acp-16-8479-2016. |
| Chen, Z., D.J. Jacob, R. Gautam, M. Omara, R.N. Stavins, R.C. Stowe, H. Nesser, M.P. Sulprizio, A. Lorente, D.J. Varon, X. Lu, L. Shen, Z. Qu, D.C. Pendergrass, and S. Hancock (2023), Satellite quantification of methane emissions and oil–gas methane intensities from individual countries in the Middle East and North Africa: implications for climate action, Atmos. Chem. Phys., doi:10.5194/acp-23-5945-2023. |
| Chen, Z., D.J. Jacob, H. Nesser, M.P. Sulprizio, A. Lorente, D.J. Varon, X. Lu, L. Shen, Z. Qu, E. Penn, and X. Yu (2023), Methane emissions from China: a high-resolution inversion of TROPOMI satellite observations, Atmos. Chem. Phys., doi:10.5194/acp-22-10809-2022. |
| Cusworth, D.H., D.J. Jacob, J.-X. Sheng, J. Benmergui, A.J. Turner, J. Brandman, L. White, and C.A. Randles (2018), Detecting high-emitting methane sources in oil/gas fields using satellite observations, Atmos. Chem. Phys., 18, 16885-16896, doi:10.5194/acp-18-16885-2018. |
| Cusworth, D.H., D.J. Jacob, D.J. Varon, C.C. Miller, X. Liu, K. Chance, A.K. Thorpe, R.M. Duren, C.E. Miller, D.R. Thompson, C. Frankenberg, L. Guanter, and C.A. Randles (2019), Potential of next-generation imaging spectrometers to detect and quantify methane point sources from space, Atmos. Meas. Tech., 12, 5655-5668, doi:10.5194/amt-12-5655-2019. |
| Decina, S.M., L.R. Hutyra, C.K. Gately, J.M. Getson, A.B. Reinmann, A.G. Short Gianotti, and P.H. Templer (2016), Soil respiration contributes substantially to urban carbon fluxes in the greater Boston area, Environmental Pollution., 212, 433-439, doi:10.1016/j.envpol.2016.01.012. |
| Delwiche, K.B., J.A. Harrison, J.D. Maasakkers, M.P. Sulprizio, J. Worden, D.J. Jacob, and E.M. Sunderland (2022), Estimating Drivers and Pathways for Hydroelectric Reservoir Methane Emissions Using a New Mechanistic Model, J. Geophys. Res., 127, e2022JG006908, doi:10.1029/2022JG006908. |
| Gately, C.K., L.R. Hutyra, S. Peterson, and I.S. Wing (2017), Urban emissions hotspots: Quantifying vehicle congestion and air pollution using mobile phone GPS data*, Environmental Pollution, 229, 496-504, doi:10.1016/j.envpol.2017.05.091. |
| Gately, C.K., L.R. Hutyra, and I.S. Wing (2015), Cities, traffic, and CO2: A multidecadal assessment of trends, drivers, and scaling relationships, Proc. Natl. Acad. Sci., 112, 4999-5004, doi:10.1073/pnas.1421723112. |
| Gurney, K.R., P. Romero-Lankao, K.C. Seto, L.R. Hutyra, R. Duren, C. Kennedy, N.B. Grimm, J.R. Ehleringer, P. Marcotullio, S. Hughes, S. Pincetl, M.V. Chester, D.M. Runfola, J.J. Feddema, and J. Sperling (2015), Track urban emissions on a human scale, Nature, 525, 179-181, doi:10.1038/525179a. |
| Hardiman, B.S., J.A. Wang, L.R. Hutyra, C.K. Gately, J.M. Getson, and M.A. Friedl (2017), Accounting for urban biogenic fluxes in regional carbon budgets, Science of The Total Environment., 592, 366-372, doi:10.1016/j.scitotenv.2017.03.028. |
| Jacob, D. (2020), SCIENCE ADVANCES | RESEARCH ARTICLE, Science. |
| Jacob, D.J., D.J. Varon, D.H. Cusworth, P.E. Dennison, C. Frankenberg, R. Gautam, L. Guanter, J. Kelley, J. McKeever, L.E. Ott, B. Poulter, Z. Qu, A.K. Thorpe, J.R. Worden, and R.M. Duren (2023), Quantifying methane emissions from the global scale down to point sources using satellite observations of atmospheric methane, Atmos. Chem. Phys., doi:10.5194/acp-22-9617-2022. |
| Lu, X., D.J. Jacob, H. Wang, J.D. Maasakkers, Y. Zhang, T.R. Scarpelli, L. Shen, Z. Qu, M.P. Sulprizio, H. Nesser, A.A. Bloom, S. Ma, J.R. Worden, S. Fan, R.J. Parker, H. Boesch, R. Gautam, D. Gordon, M.D. Moran, F. Reuland, C.A.O. Villasana, and A. Andrews (2022), Methane emissions in the United States, Canada, and Mexico: evaluation of national methane emission inventories and 2010-2017 sectoral trends by inverse analysis of in situ (GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) atmospheric observations, Atmos. Chem. Phys., 22, 395-418, doi:10.5194/acp-22-395-2022. |
| Lu, X., D.J. Jacob, Y. Zhange, L. Sheng, M.P. Sulpriziod, J.D. Maasakkersh, D.J. Varond, Z. Qui, Z. Chend, B. Hmielj, R.J. Parkerk, H. Boeschk, H. Wanga, C. Hea, and S. Fana (2023), RESEARCH ARTICLE | EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES OPEN ACCESS Observation-derived 2010-2019 trends in methane emissions and intensities from US oil and gas fields tied to activity metrics, Proc. Natl. Acad. Sci., doi:10.1073/pnas.2217900120. |
| Maasakkers, J.D., D.J. Jacob, M.P. Sulprizio, T.R. Scarpelli, H. Nesser, J.-X. Sheng, Y. Zhang, M. Hersher, A.A. Bloom, K.W. Bowman, J.R. Worden, G. Janssens-Maenhout, and R.J. Parker (2019), Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015, Atmos. Chem. Phys., 19, 7859-7881, doi:10.5194/acp-19-7859-2019. |
| Maasakkers, J.D., D.J. Jacob, M.P. Sulprizio, T.R. Scarpelli, H. Nesser, J. Sheng, Y. Zhang, X. Lu, A.A. Bloom, K.W. Bowman, J.R. Worden, and R.J. Parker (2021), 2010–2015 North American methane emissions, sectoral contributions, and trends: a high-resolution inversion of GOSAT observations of atmospheric methane, Atmos. Chem. Phys., 21, 4339-4356, doi:10.5194/acp-21-4339-2021. |
| McKain, K., A. Down, S.M. Raciti, J. Budney, L.R. Hutyra, C. Floerchinger, S.C. Herndon, T. Nehrkorn, M.S. Zahniser, R.B. Jackson, N. Phillips, and S.C. Wofsy (2015), Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts, Proc. Natl. Acad. Sci., 112, 1941-1946, doi:10.1073/pnas.1416261112. |
| Qu, Z., D.J. Jacob, Y. Zhang, L. Shen, D.J. Varon, X. Lu, T. Scarpelli, A. Bloom, J. Worden, and R.J. Parker (2022), Attribution of the 2020 surge in atmospheric methane by inverse analysis of GOSAT observations, Environ. Res. Lett., 17, 094003, doi:10.1088/1748-9326/ac8754. |
| Reinmann, A.B., and L.R. Hutyra (2017), Edge effects enhance carbon uptake and its vulnerability to climate change in temperate broadleaf forests, Proc. Natl. Acad. Sci., 114, 107-112, doi:10.1073/pnas.1612369114. |