Organization
National Center for Atmospheric Research
Co-Authored Publications
-
Decker, Z.D.-.N., et al. (2024), Airborne Observations Constrain Heterogeneous Nitrogen and Halogen Chemistry on Tropospheric and Stratospheric Biomass Burning Aerosol, Geophys. Res. Lett., 51, e2023GL107273, doi:10.1029/2023GL107273.
-
Roberts, J.M., et al. (2024), Observations of cyanogen bromide (BrCN) in the global troposphere and their relation to polar surface O3 destruction, Atmos. Chem. Phys., doi:10.5194/acp-24-3421-2024.
-
Zhang, J., et al. (2024), Stratospheric air intrusions promote global-scale new particle formation.Science, Wang, 385, 210-216, doi:10.1126/science.adn2961.
-
Cho, C., et al. (2023), a petrochemical industry and its volatile organic compounds (VOCs) emission rate, Elem Sci Anth, 9, doi:10.1525/elementa.2021.00015.
-
Kim, H., et al. (2023), Observed versus simulated OH reactivity during KORUS-AQ campaign: Implications for emission inventory and chemical environment in East Asia, KORUS-AQ campaign. Elem Sci Anth, 10, 1-26, doi:https.
-
Rickly, P., et al. (2023), Emission factors and evolution of SO2 measured from biomass burning in wildfires and agricultural fires, Atmos. Chem. Phys., doi:10.5194/acp-22-15603-2022.
-
Brune, W.H., et al. (2022), Observations of atmospheric oxidation and ozone production in South Korea, Atmos. Environ., 269, 118854, doi:10.1016/j.atmosenv.2021.118854.
-
Cho, C., et al. (2022), a petrochemical industry and its volatile organic compounds (VOCs) emission rate, Elementa: Science of the Anthropocene, 9, doi:10.1525/elementa.2021.00015.
-
Kim, D., et al. (2022), Field observational constraints on the controllers in glyoxal (CHOCHO) reactive uptake to aerosol, Atmos. Chem. Phys., doi:10.5194/acp-22-805-2022.
-
Liao, J., et al. (2022), Formaldehyde evolution in US wildfire plumes during the Fire Influence on Regional to Global Environments and Air Quality experiment (FIREX-AQ), Atmos. Chem. Phys., doi:10.5194/acp-21-18319-2021.
-
Liao, J., et al. (2022), Formaldehyde evolution in US wildfire plumes during the Fire Influence on Regional to Global Environments and Air Quality experiment (FIREX-AQ), Atmos. Chem. Phys., doi:10.5194/acp-21-18319-2021.
-
Schwantes, R.H., et al. (2022), Evaluating the Impact of Chemical Complexity and Horizontal Resolution on Tropospheric Ozone Over the Conterminous US With a Global Variable Resolution Chemistry Model, J. Adv. Modeling Earth Syst., 14, e2021MS002889, doi:10.1029/2021MS002889.
-
Wolfe, G.M., et al. (2022), Photochemical evolution of the 2013 California Rim Fire: synergistic impacts of reactive hydrocarbons and enhanced oxidants, Atmos. Chem. Phys., doi:10.5194/acp-22-4253-2022.
-
Xu, L., et al. (2022), Adv.7, eabl3648 (2021) 8 December 2021SCIENCE ADVANCES, Ozone chemistry in western U.S. wildfire plumes, Xu et al., Sci., 7, eabl3648, doi:10.1126/sciadv.abl3648.
-
Xu, L., et al. (2022), Ozone chemistry in western U.S. wildfire plumes, Science Advances, 7, eabl3648, doi:10.1126/sciadv.abl3648.
-
zhang, X., et al. (2022), Probing isoprene photochemistry at atmospherically relevant nitric oxide levels, Chem, 8, 2022, doi:10.1016/j.chempr.2022.08.003.
-
Decker, Z.D.-.N., et al. (2021), Nighttime and daytime dark oxidation chemistry in wildfire plumes: an observation and model analysis of FIREX-AQ aircraft data, Atmos. Chem. Phys., 21, 16293-16317, doi:10.5194/acp-21-16293-2021.
-
Decker, Z.D.-.N., et al. (2021), Novel Analysis to Quantify Plume Crosswind Heterogeneity Applied to Biomass Burning Smoke, Environ. Sci. Technol., 55, 15646-15657, doi:10.1021/acs.est.1c03803.
-
Liao, J., et al. (2021), Formaldehyde evolution in US wildfire plumes during the Fire Influence on Regional to Global Environments and Air Quality experiment (FIREX-AQ), Atmos. Chem. Phys., doi:10.5194/acp-21-18319-2021.
-
Thompson, C., et al. (2021), The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere, Bull. Am. Meteorol. Soc., doi:10.1175/BAMS-D-20-0315.1.
-
Wang, S., et al. (2021), Chemical Tomography in a Fresh Wildland Fire Plume: A Large Eddy Simulation (LES) Study, J. Geophys. Res..
-
Brune, W.H., et al. (2020), Exploring Oxidation in the Remote Free Troposphere: Insights From Atmospheric Tomography (ATom), J. Geophys. Res., 125, doi:10.1029/2019JD031685.
-
Koenig, T., et al. (2020), Quantitative detection of iodine in the stratosphere, Proc. Natl. Acad. Sci., 117-1860, doi:10.1073/pnas.1916828117.
-
Schroeder, J.R., et al. (2020), Observation-based modeling of ozone chemistry in the Seoul metropolitan area during the Korea-United States Air Quality Study (KORUS-AQ), Elem Sci Anth, 8, doi:10.1525/elementa.400.
-
Schwantes, R.H., et al. (2020), Comprehensive isoprene and terpene gas-phase chemistry improves simulated surface ozone in the southeastern US, Atmos. Chem. Phys., 20, 3739-3776, doi:10.5194/acp-20-3739-2020.
-
Thames, A.B., et al. (2020), Missing OH reactivity in the global marine boundary layer, Atmos. Chem. Phys., 20, 4013-4029, doi:10.5194/acp-20-4013-2020.
-
Travis, K., et al. (2020), Constraining remote oxidation capacity with ATom observations, Atmos. Chem. Phys., 20, 7753-7781, doi:10.5194/acp-20-7753-2020.
-
Wang, S., et al. (2020), Global Atmospheric Budget of Acetone: Air‐Sea Exchange and the Contribution to Hydroxyl Radicals, J. Geophys. Res., 125, e2020JD032553, doi:10.1029/2020JD032553.
-
Hall, S.R., and K.L. Ullmann (2019), ATom: L2 Photolysis Frequencies from NCAR CCD Actinic Flux Spectroradiometers (CAFS), Ornl Daac, doi:10.3334/ORNLDAAC/1714.
-
Hall, S.R., et al. (2019), ATom: Global Modeled and CAFS Measured Cloudy and Clear Sky Photolysis Rates, 2016, Ornl Daac, doi:10.3334/ORNLDAAC/1651.
-
Hall, S.R., et al. (2019), Atom: Global Modeled and CAFS Measured Cloudy and Clear Sky Photolysis Rates, 2016. ORNL DAAC, Oak Ridge, Tennessee, Ornl Daac, doi:10.3334/ORNLDAAC/1651.
-
Jeong, D., et al. (2019), Integration of airborne and ground observations of nitryl chloride in the Seoul metropolitan area and the implications on regional oxidation capacity during KORUS-AQ 2016, Atmos. Chem. Phys., 19, 12779-12795, doi:10.5194/acp-19-12779-2019.
-
Wang, S., et al. (2019), Atmospheric Acetaldehyde: Importance of Air‐Sea Exchange and a Missing Source in the Remote Troposphere, Geophys. Res. Lett., 46, doi:10.1029/2019GL082034.
-
Wolfe, G.M., et al. (2019), ATom: Column-Integrated Densities of Hydroxyl and Formaldehyde in Remote Troposphere, Ornl Daac, doi:10.3334/ORNLDAAC/1669.
-
Wolfe, G.M., et al. (2019), Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations, Proc. Natl. Acad. Sci., doi:10.1073/pnas.1821661116.
-
Brune, W.H., et al. (2018), Atmospheric oxidation in the presence of clouds during the Deep Convective Clouds and Chemistry (DC3) study, Atmos. Chem. Phys., 18, 14493-14510, doi:10.5194/acp-18-14493-2018.
-
Hall, S.R., et al. (2018), Cloud impacts on photochemistry: building a climatology of photolysis rates from the Atmospheric Tomography mission, Atmos. Chem. Phys., 18, 16809-16828, doi:10.5194/acp-18-16809-2018.
-
McDuffie, E., et al. (2018), ClNO2 Yields From Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of the Current Parameterization, J. Geophys. Res., 123, 12,994-13,015, doi:10.1029/2018JD029358.
-
Silvern, R.F., et al. (2018), Observed NO/NO2 Ratios in the Upper Troposphere Imply Errors in NO-NO2-O3 Cycling Kinetics or an Unaccounted NOx Reservoir, Geophys. Res. Lett..
-
Wofsy, S., et al. (2018), ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols, Ornl Daac, doi:10.3334/ORNLDAAC/1581.
-
Ryu, Y., et al. (2017), Improved modeling of cloudy-sky actinic flux using satellite cloud retrievals, Geophys. Res. Lett., 44, doi:10.1002/2016GL071892.
-
Anderson, D.C., et al. (2016), A pervasive role for biomass burning in tropical high ozone/low water structures, Nature, doi:10.1038/ncomms10267.
-
Liu, X., et al. (2016), Agricultural fires in the southeastern U.S. during SEAC4RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol, J. Geophys. Res., 121, 7383-7414, doi:10.1002/2016JD025040.
-
Nault, B.A., et al. (2016), Observational Constraints on the Oxidation of NOx in the Upper Troposphere, J. Phys. Chem. A, 120, 1468-1478, doi:10.1021/acs.jpca.5b07824.
-
Travis, K., et al. (2016), Why do models overestimate surface ozone in the Southeast United States?, Atmos. Chem. Phys., 16, 13561-13577, doi:10.5194/acp-16-13561-2016.
-
Nault, B.A., et al. (2015), Measurements of CH3O2NO2 in the upper troposphere, Atmos. Meas. Tech., 8, 987-997, doi:10.5194/amt-8-987-2015.
-
Wolfe, G.M., et al. (2015), Quantifying sources and sinks of reactive gases in the lower atmosphere using airborne flux observations, Geophys. Res. Lett., 42, 8231-8240, doi:10.1002/2015GL065839.
-
Corr, C.A., et al. (2012), Spectral absorption of biomass burning aerosol determined from retrieved single scattering albedo during ARCTAS, Atmos. Chem. Phys., 12, 10505-10518, doi:10.5194/acp-12-10505-2012.
-
Olson, J.R., et al. (2012), An analysis of fast photochemistry over high northern latitudes during spring and summer using in-situ observations from ARCTAS and TOPSE, Atmos. Chem. Phys., 12, 6799-6825, doi:10.5194/acp-12-6799-2012.
-
Fried, A., et al. (2011), Detailed comparisons of airborne formaldehyde measurements with box models during the 2006 INTEX-B and MILAGRO campaigns: potential evidence for significant impacts of unmeasured and multi-generation volatile organic carbon compounds, Atmos. Chem. Phys., 11, 11867-11894, doi:10.5194/acp-11-11867-2011.
-
Petropavlovskikh, I., et al. (2010), Low-ozone bubbles observed in the tropical tropopause layer during the TC4 campaign in 2007, J. Geophys. Res., 115, D00J16, doi:10.1029/2009JD012804.
-
Petropavlovskikh, I., et al. (2010), Low‐ozone bubbles observed in the tropical tropopause layer during the TC4 campaign in 2007, J. Geophys. Res., 115, D00J16, doi:10.1029/2009JD012804.
-
Kroon, M., et al. (2008), OMI total ozone column validation with Aura-AVE CAFS observations, J. Geophys. Res., 113, D15S13, doi:10.1029/2007JD008795.
-
Petropavlovskikh, I., et al. (2008), In-flight validation of Aura MLS ozone with CAFS partial ozone columns, J. Geophys. Res., 113, D16S41, doi:10.1029/2007JD008690.
-
Petropavlovskikh, I., et al. (2007), Algorithm for the charge-coupled-device scanning actinic flux spectroradiometer ozone retrieval in support of the Aura satellite validation, Journal of Applied Remote Sensing, 1, 1, doi:10.1117/1.2802563.
Note: Only publications that have been uploaded to the ESD Publications database are listed here.