My research is focused on cloud and aerosol remote sensing. I am interested in quantifying cloud and aerosol properties in areas difficult to sample from satellite to evaluate their radiative effect on climate and refine process understanding. In this context, I combine remote sensing products of clouds and aerosol from satellite, ground-based, and airborne measurements, while focusing on hyperspectral measurements of transmitted sun light. I have relied on observations and interpretations thereof, developed new measurement technologies, and implemented new retrieval methodologies to further the understanding of climate radiative effects. Linking technical aspects of instrument and technology development with remote sensing and process understanding is one of my strong interests.
-
LeBlanc, S., et al. (2022), Airborne observations during KORUS-AQ show that aerosol optical depths are more spatially self-consistent than aerosol intensive properties, Atmos. Chem. Phys., doi:10.5194/acp-22-11275-2022.
-
LeBlanc, S., et al. (2020), Above-cloud aerosol optical depth from airborne observations in the southeast Atlantic, Atmos. Chem. Phys., 20, 1565-1590, doi:10.5194/acp-20-1565-2020.
-
LeBlanc, S. (2018), samuelleblanc/fp: Moving Lines: NASA airborne research flight planning tool release (Version v1.21), Zenodo., doi:10.5281/zenodo.1478126.
-
LeBlanc, S., et al. (2015), A spectral method for discriminating thermodynamic phase and retrieving cloud optical thickness and effective radius using transmitted solar radiance spectra, Atmos. Meas. Tech., 8, 1361-1383, doi:10.5194/amt-8-1361-2015.
-
LeBlanc, S., et al. (2012), Spectral aerosol direct radiative forcing from airborne radiative measurements during CalNex and ARCTAS, J. Geophys. Res., 117, D00V20, doi:10.1029/2012JD018106.
-
Gupta, S., et al. (2021), Impact of the Variability in Vertical Separation between BiomassBurning Aerosols and Marine Stratocumulus on Cloud Microphysical Properties over the Southeast Atlantic, Atmos. Chem. Phys., doi:10.5194/acp-2020-1039.
-
Pistone, K., et al. (2021), Exploring the elevated water vapor signal associated with the free-tropospheric biomass burning plume over the southeast Atlantic Ocean, Atmos. Chem. Phys.(submitted), doi:10.5194/acp-2020-1322.
-
Pistone, K., et al. (2021), Exploring the elevated water vapor signal associated with the free tropospheric biomass burning plume over the southeast Atlantic Ocean, Atmos. Chem. Phys., 21, 9643-9668, doi:10.5194/acp-21-9643-2021.
-
Shinozuka, Y., et al. (2020), Daytime aerosol optical depth above low-level clouds is similar to that in adjacent clear skies at the same heights: airborne observation above the southeast Atlantic, Atmos. Chem. Phys.(submitted), doi:10.5194/acp-2019-1007.
-
Shinozuka, Y., et al. (2020), Modeling the smoky troposphere of the southeast Atlantic: a comparison to ORACLES airborne observations from September of 2016, Atmos. Chem. Phys., 20, 11491-11526, doi:10.5194/acp-20-11491-2020.
-
Cochrane, S.P., et al. (2019), Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments, Atmos. Meas. Tech., 12, 6505-6528, doi:10.5194/amt-12-6505-2019.
-
Kacenelenbogen, M.S., et al. (2019), Estimations of global shortwave direct aerosol radiative effects above opaque water clouds using a combination of A-Train satellite sensors, Atmos. Chem. Phys., 19, 4933-4962, doi:10.5194/acp-19-4933-2019.
-
shinozuka, ., et al. (2019), Modeling the smoky troposphere of the southeast Atlantic: a comparison to ORACLES airborne observations from September of 2016, Atmos. Chem. Phys. Discuss.(submitted), doi:https://doi.org/10.5194/acp-2019-678.
-
Segal-Rozenhaimer, M., et al. (2018), Bias and Sensitivity of Boundary Layer Clouds and Surface Radiative Fluxes in MERRA-2 and Airborne Observations Over the Beaufort Sea During the ARISE Campaign, J. Geophys. Res., 123, 6565-6580, doi:10.1029/2018JD028349.
-
Star, T., et al. (2018), 4STAR_codes: 4STAR processing codes, Zenodo, doi:10.5281/zenodo.1492912.
-
Dunagan, S., et al. (2017), Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR), doi:20170005591.