Radar

Accumulation Radar

Fine depth resolution profiling of the top 100 m of the ice column is achieved with this radar designed to map variations in the snow accumulation rate. When operated from aircraft, it operates from 600 to 900 MHz providing 28-cm depth resolution in ice and when operated on the ground (500 MHz to 2 GHz) a 5.6-cm depth resolution in ice is achieved. This fine depth resolution enables area extensive spatial mapping of the annual accumulation layers.

Instrument Type
Aircraft
Point(s) of Contact
Airborne Synthetic Aperture Radar

The Airborne Synthetic Aperture Radar (AIRSAR) was an all-weather imaging tool able to penetrate through clouds and collect data at night. The longer wavelengths could also penetrate into the forest canopy and in extremely dry areas, through thin sand cover and dry snow pack. AIRSAR was designed and built by the Jet Propulsion Laboratory (JPL) which also manages the AIRSAR project. AIRSAR served as a NASA radar technology testbed for demonstrating new radar technology and acquiring data for the development of radar processing techniques and applications. As part of NASA’s Earth Science Enterprise, AIRSAR first flew in 1988, and flew its last mission in 2004.

Instrument Type
Measurements
Aircraft
Point(s) of Contact
Airborne Cloud Radar

The utility of millimeter-wave radars have been successfully used for cloud sensing and cloud microphysical studies. Studies of the impact of cloud feedbacks on the earth's radiation budget have underscored the importance of having a means of measuring the vertical distribution of clouds. Millimeter-wave radars can provide this information under most conditions, with high resolution, using a relatively compact system.

The Airborne Cloud Radar (ACR) for profiling cloud vertical structure was developed by the Jet Propulsion Laboratory and the University of Massachusetts in 1996. It is a W-band (95 GHz) polarimetric Doppler radar designed as a prototype airborne facility for the development of the 94 GHz Cloud Profiling Radar (CPR) for NASA CloudSat mission.

The ACR is a third-generation millimeter-wave cloud radar. While adopting the well tested techniques used by its predecessors, ACR also has a number of new features including an internal calibration loop, frequency agility, digital I and Q demodulation, digital matched filtering, and a W-band low-noise amplifier.

Instrument Type
Measurements
Point(s) of Contact