Associated content: 

Scanning High-Resolution Interferometer Sounder

The Scanning High-resolution Interferometer Sounder (S-HIS) is a scanning interferometer which measures emitted thermal radiation at high spectral resolution between 3.3 and 18 microns The measured emitted radiance is used to obtain temperature and water vapor profiles of the Earth's atmosphere in clear-sky conditions. S-HIS produces sounding data with 2 kilometer resolution (at nadir) across a 40 kilometer ground swath from a nominal altitude of 20 kilometers onboard a NASA ER-2 or Global Hawk.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

National Airborne Sounder Testbed - Interferometer

The National Airborne Sounder Testbed-Interferometer (NAST-I) is a high spectral resolution (0.25 cm-1) and high spatial resolution (0.13 km linear resolution per km of aircraft flight altitude, at nadir) scanning (2.3 km ground cross-track swath width per km of aircraft flight altitude) passive infrared (IR) Michelson interferometer sounding system that was developed to be flown on high-altitude aircraft to provide experimental observations needed to finalize the specifications and to test proposed designs and data processing algorithms for the Cross-track Infrared Sounder (CrIS) flying on the Suomi NPP (SNPP) and Joint Polar Satellite System (JPSS) platforms. Because the NAST-I infrared spectral radiance and temperature, humidity, trace species, cloud and surface property soundings have unprecedented spectral and high spatial resolution, respectively, the data can be used to support a variety of satellite sensor calibration / validation and atmospheric research programs. The NAST-I covers a spectral range from ~ 600-2900 cm-1 (3.5-16 microns) with 0.25 cm-1 spectral resolution, yielding more than 9000 spectral channels of radiance emission/absorption information. The NAST-I instrument has flown numerous science missions on the ER-2, WB-57, and Proteus aircraft, and the team has evaluated efforts needed to become operational on the DC-8. Most recently, NAST-I was part of the ER-2 science payload for the FIREX-AQ field campaign conducted during August, 2019 (https://www.esrl.noaa.gov/csl/projects/firex-aq/). Additional information can be obtained from Anna Noe (anna.m.noe@nasa.gov, 757-864-6466), Dr. Daniel Zhou (daniel.k.zhou@nasa.gov, 757-864-5663), or Dr. Allen Larar (Allen.M.Larar@nasa.gov, 757-864-5328).

Instrument Type: 
Point(s) of Contact: 
Anna Noe (Mgr)

Polarimetric Scanning Radiometer - C/X Band

Remote sensing of soil moisture using C- and X-band microwave frequencies provides less penetration of vegetation and soil probing depth than L-band, but is more amenable to implementation using airborne or spaceborne antennas of practical size. The Japanese AMSR-E imaging radiometer on board the NASA EOS Aqua satellite is one such sensor capable of retrieving soil moisture using a microwave channel at 6.9 GHz with ~75 km spatial resolution. Aqua was launched in May 2002, and will provide a global soil moisture product based on AMSR-E data. The C-band channels on the future NPOESS Conical Microwave Imager and Sounder (CMIS) will provide new operational capabilities for mapping soil moisture. Sea surface temperature is also observable under most cloud conditions using passive microwave C-band radiometry.

To provide airborne mapping capabilities for measuring both soil moisture and sea surface temperature a second operational PSR scanhead was built incorporating fully polarimetric C- and X-band radiometers inside a standard PSR scanhead drum. The C-band radiometer in PSR/CX provides vertically and horizontally polarized measurements within four adjacent subbands at 5.80-6.20, 6.30-6.70, 6.75-7.10, and 7.15-7.50 GHz. In addition, the radiometer provides fully polarimetric measurements at 6.75-7.10 GHz. The use of four subbands and polarimetric capability has provided a unique means of demonstrating and optimizing algorithms for RFI mitigation.

PSR/CX was originally implemented using only a C-band radiometer (as PSR/C) in preparation for SGP99. In preparation for SMEX02 an X-band radiometer was added to provide vertically and horizontally polarized measurements within four bands at 10.60-10.68, 10.68-10.70, 10.70-10.80, and 10.60-10.80 GHz. Fully polarimetric measurements are provided within 10.60-10.80 GHz. The combined dual-band system provides additional information on soil moisture, along with the capability to measure precipitation and the near-surface wind vector over water backgrounds. The X-band channels also provide additional RFI mitigation capability.

Applications of PSR/CX include ocean surface emissivity studies, soil moisture mapping, sea ice mapping, and imaging of heavy precipitation.

Instrument Type: 
Point(s) of Contact: 

Polarimetric Scanning Radiometer - Original Scanhead

The PSR/A scanhead provides either full-Stokes vector or tri-polarimetric sensitivity at the radiometric bands of 10.7, 18.7, and 37 GHz, and thus is well suited for the NPOESS Integrated Program Office’s internal government (IG) studies of ocean surface wind vector measurements. PSR data has been used to demonstrate the first-ever retrieval of ocean surface wind fields using conically-scanned polarimetric radiometer data. The results have suggested that the NPOESS specification for wind vector accuracy will be achievable with a polarimetric two-look system.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Polarimetric Scanning Radiometer

The Polarimetric Scanning Radiometer (PSR) is a versatile airborne microwave imaging radiometer developed by the Georgia Institute of Technology and the NOAA Environmental Technology Laboratory (now NOAA/ESRL PSD) for the purpose of obtaining polarimetric microwave emission imagery of the Earth's oceans, land, ice, clouds, and precipitation. The PSR is the first airborne scanned polarimetric imaging radiometer suitable for post-launch satellite calibration and validation of a variety of future spaceborne passive microwave sensors. The capabilities of the PSR for airborne simulation are continuously being expanded through the development of new mission-specific scanheads to provide airborne post-launch simulation of a variety of existing and future U.S. sensors, including CMIS, ATMS, AMSU, SSMIS, WindSat, TMI, RAMEX, and GEM.

The basic concept of the PSR is a set of polarimetrc radiometers housed within a gimbal-mounted scanhead drum. The scanhead drum is rotatable by the gimbal positioner so that the radiometers (Figure 2.) can view any angle within ~70° elevation of nadir at any azimuthal angle (a total of 1.32 pi sr solid angle), as well as external hot and ambient calibration targets. The configuration thus supports conical, cross-track, along-track, fixed-angle stare, and spotlight scan modes. The PSR was designed to provide several specific and unique observational capabilities from various aircraft platforms. The original design was based upon several observational objectives:

1. To provide fully polarimetric (four Stokes' parameters: Tv, Th, TU, and TV) imagery of upwelling thermal emissions at several of the most important microwave sensing frequencies (10.7, 18.7, 37.0, and 89.0 GHz), thus providing measurements from X to W band;
2. To provide the above measurements with absolute accuracy for all four Stokes' parameters of better than 1 K for Tv and Th, and 0.1 K for TU and TV;
3. To provide radiometric imaging with both fore and aft look capability (rather than single swath observations);
4. To provide conical, cross-track, along-track, and spotlight mode scanning capabilities; and
5. To provide imaging resolutions appropriate for high resolution studies of precipitating and non-precipitating clouds, mesoscale ocean surface features, and satellite calibration/validation at Nyquist spatial sampling.

The original system has been extended - as discussed below - to greatly exceed the original design objectives by providing additional radiometric channels and expanded platform capabilities.

The PSR scanhead was designed for in-flight operation without the need for a radome (i.e., in direct contact with the aircraft slipstream), thus allowing precise calibration and imaging with no superimposed radome emission signatures. Moreover, the conical scan mode allows the entire modified Stokes' vector to be observed without polarization mixing.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

NPOESS Airborne Sounder Testbed - Microwave

The NAST-M currently consists of two radiometers covering the 50-57 GHz band and a set of spectral emission measurements within 4 GHz of the 118.75 GHz oxygen line with eight single sideband and 9 double sideband channels, respectively. To be added prior to CRYSTAL-FACE are five double side band channels within 4 GHz of the 183 GHz water vapor line and a single band channel at 425 GHz. For clear air, the temperature and water vapor information provided by the 50-57 GHz, 118 GHz, and 183 GHz channels is largely redundant; but, for cloudy sky conditions the three bands provide information on the effects of precipitating clouds on the temperature and water vapor profile retrievals and enables sounding through the non-precipitating portion of the cloud, a feature particularly important for CRYSTAL-FACE.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Airborne Visible/Infrared Imaging Spectrometer

AVIRIS is the second in a series of imaging spectrometer instruments developed at the Jet Propulsion Laboratory (JPL) for earth remote sensing. It is a unique optical sensor that delivers calibrated images of the upwelling spectral radiance in 224 contiguous spectral channels (bands) with wavelengths from 380 to 2510 nanometers. It uses scanning optics and four spectrometers to image a 677 pixel swath simultaneously in all 224 bands. AVIRIS has flown in North America, Europe, and portions of South America.

The AVIRIS sensor collects data that can be used for characterization of the Earth's surface and atmosphere from geometrically coherent spectroradiometric measurements. This data can be applied to studies in the fields of oceanography, environmental science, snow hydrology, geology, volcanology, soil and land management, atmospheric and aerosol studies, agriculture, and limnology. Applications under development include the assessment and monitoring of environmental hazards such as toxic waste, oil spills, and land/air/water pollution. With proper calibration and correction for atmospheric effects, the measurements can be converted to ground reflectance data which can then be used for quantitative characterization of surface features.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Pages

Subscribe to RSS - Proteus