Pyrocumulonimbus affect average stratospheric aerosol composition

Katich, J., et al. (2023), Pyrocumulonimbus affect average stratospheric aerosol composition, Science, 379, 815-820, doi:10.1126/science.add3101.

Nitrogen oxides in the free troposphere: implications for tropospheric oxidants and the interpretation of satellite NO2 measurements

Compact Airborne Formaldehyde Experiment

The NASA GSFC Compact Airborne Formaldehyde Experiment (CAFE) instrument measures formaldehyde (CH2O) on both pressurized and unpressurized (high-altitude) aircraft. Using non-resonant laser induced fluorescence (LIF), CAFE possesses the high sensitivity, fast time response, and dynamic range needed to observe CH2O throughout the troposphere and lower stratosphere.

Formaldehyde is produced via the oxidation of hydrocarbons, notably methane (a ubiquitous greenhouse gas) and isoprene (the primary hydrocarbon emitted by vegetation). Observations of CH2O can thus provide information on many atmospheric processes, including:
 - Convective transport of air from the surface to the upper troposphere
 - Emissions of reactive hydrocarbons from cities, forests, and fires
 - Atmospheric oxidizing capacity, which relates to formation of ozone and destruction of methane
In situ observations of CH2O are also crucial for validating retrievals from satellite instruments, such as OMI, TROPOMI, and TEMPO.

Instrument Type: 
Measurements: 
Aircraft: 
DC-8 - AFRC, ER-2 - AFRC, C-23 Sherpa - WFF, HL5200 Hanseo University (NIER)
Point(s) of Contact: 
Subscribe to RSS - ATom 3