Advanced Vertical Atmospheric Profiling System

The Advanced Vertical Atmospheric Profiling System (AVAPS) is the dropsonde system for the Global Hawk. The Global Hawk dropsonde is a miniaturized version of standard RD-93 dropsondes based largely on recent MIST driftsondes deployed from balloons. The dropsonde provides vertical profiles of pressure, temperature, humidity, and winds. Data from these sondes are transmitted in near real-time via Iridium or Ku-band satellite to the ground-station, where additional processing will be performed for transmission of the data via the Global Telecommunications System (GTS) for research and operational use. The dispenser is located in zone 61 in the Global Hawk tail and is capable of releasing up to 88 sondes in a single flight.

Instrument Type: 
Measurements: 
Aircraft: 
Instrument Team: 

Multicenter Airborne Coherent Atmospheric Wind Sensor

MACAWS is an airborne side-scanning Doppler laser radar (lidar) which measures two dimensional wind fields, vertical wind profiles, and aerosol backscatter from clear air and clouds. Range varies from 10-30 km depending on aerosol abundance and cloud attenuation. Upon exiting the aircraft, the lidar beam is completely eye-safe. MACAWS is developed and operated cooperatively by the atmospheric lidar remote sensing groups of NASA Marshall Space Flight Center, NOAA Environmental Technology Laboratory, and Jet Propulsion Laboratory.

MACAWS consists of: a frequency-stable pulsed transverse-excited atmospheric pressure carbon dioxide laser emitting 0.5-1.0 J per pulse at 10.6 micron wavelength at a nominal pulse repetition frequency (PRF) of ~20 Hz; a coherent receiver employing a cryogenically-cooled HgCdTe detector; a 0.3 m off-axis paraboloidal telescope shared by the transmitter and receiver in a monostatic configuration; a ruggedized optical table and three-point support structure; a scanner using two counter-rotating germanium wedges to refract the transmitted beam in the desired direction; an inertial navigation system (INS) for frequent measurements of aircraft attitude and speed; data processing, display, and storage devices; and an Operations Control System (OCS) to coordinate all system functions.

Instrument Type: 
Aircraft: 
Instrument Team: 

High Altitude Imaging Wind and Rain Airborne Profiler

HIWRAP (High-Altitude Imaging Wind and Rain Airborne Profiler) is a dual-frequency radar (Ka- and Ku-band), dual-beam (300 and 400 incidence angle), conical scan, solid-state transmitter-based system, designed for operation on the high-altitude (20 km) Global Hawk UAV. HIWRAP characteristics: Conically scanning; Simultaneous Ku/Ka-band & two beams @30 and 40 deg; Winds using precipitation & clouds as tracers; Ocean vector wind scatterometry; Map the 3-dimensional winds and precipitation within hurricanes and other severe weather events; Map ocean surface winds in clear to light rain regions using scatterometry.

Instrument Type: 
Aircraft: 
Instrument Team: 

Doppler Aerosol WiNd Lidar

DAWN (Doppler Aerosol WiNd lidar) is a pulsed laser, 2-micron, and solid-state. It pulses at 10 Hertz with 250 mJ pulses that are 200 ns long full width at half maximum (FWHM). Using the wedge scanner, five different azimuth angles are measured: 1) to end up with five equations for the three unknown components of wind vs. altitude, 2) to mitigate cloud obscurations, and 3) to measure the atmospheric variability.

DAWN can provide vertical profiles of u, v, and w components of 3-D wind in the region below the aircraft. Various vertical and horizontal resolutions are possible. DAWN can also provide vertical profiles of line of sight (LOS) wind for the five (5) azimuth angles; vertical profiles of relative aerosol backscatter in the region below the aircraft, for the five (5) azimuth angles; vertical profiles of wind turbulence in the region below the aircraft, for the five (5) azimuth angles; and correlations of the data products vs. height.

Instrument Type: 
Aircraft: 
Instrument Team: 

Tropospheric Wind Lidar Technology Experiment

The TWiLiTE instrument is a compact, rugged direct detection scanning Doppler lidar designed to measure wind profiles in clear air from 18 km to the surface. TWiLiTE operates autonomously on NASA research aircraft (ER-2, DC-8, WB-57, Global Hawk). Initial engineering flight tests on the NASA ER-2 in 2009 demonstrated autonomous operation of all major systems. TWiLiTE will be reconfigured to fly on the NASA Global Hawk as part of the Hurricane and Severe Storm Sentinel Venture Class Mission.

Instrument Type: 
Measurements: 
Aircraft: 
Instrument Team: 

Meteorological Measurement System

The Meteorological Measurement System (MMS) is a state-of-the-art instrument for measuring accurate, high resolution in situ airborne state parameters (pressure, temperature, turbulence index, and the 3-dimensional wind vector). These key measurements enable our understanding of atmospheric dynamics, chemistry and microphysical processes. The MMS is used to investigate atmospheric mesoscale (gravity and mountain lee waves) and microscale (turbulence) phenomena. An accurate characterization of the turbulence phenomenon is important for the understanding of dynamic processes in the atmosphere, such as the behavior of buoyant plumes within cirrus clouds, diffusions of chemical species within wake vortices generated by jet aircraft, and microphysical processes in breaking gravity waves. Accurate temperature and pressure data are needed to evaluate chemical reaction rates as well as to determine accurate mixing ratios. Accurate wind field data establish a detailed relationship with the various constituents and the measured wind also verifies numerical models used to evaluate air mass origin. Since the MMS provides quality information on atmospheric state variables, MMS data have been extensively used by many investigators to process and interpret the in situ experiments aboard the same aircraft.

Instrument Team: 

Conically-Scanning Two-look Airborne Radiometer

C-STAR measures precipitation, surface water and near ocean surface wind speed and direction.

Instrument Type: 
Measurements: 
Aircraft: 
Instrument Team: 
Subscribe to RSS - Wind