Markovian Statistical Model of Cloud Optical Thickness. Part I: Theory and...

Alexandrov, M. D., A. Marshak, B. Cairns, and A. S. Ackerman (2022), Markovian Statistical Model of Cloud Optical Thickness. Part I: Theory and Examples, J. Atmos. Sci., 79, 3315-3332, doi:10.1175/JAS-D-22-0125.1.
Abstract: 

We present a generalization of the binary-value Markovian model previously used for statistical characterization of cloud masks to a continuous-value model describing 1D fields of cloud optical thickness (COT). This model has simple functional expressions and is specified by four parameters: the cloud fraction, the autocorrelation (scale) length, and the two parameters of the normalized probability density function of (nonzero) COT values (this PDF is assumed to have gamma-distribution form). Cloud masks derived from this model by separation between the values above and below some threshold in COT appear to have the same statistical properties as in binary-value model described in our previous publications. We demonstrate the ability of our model to generate examples of various cloud-field types by using it to statistically imitate actual cloud observations made by the Research Scanning Polarimeter (RSP) during two field experiments.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Radiation Science Program (RSP)
Mission: 
ACTIVATE
ACE