Exploring Subpixel Learning Algorithms for Estimating Global Land Cover Fractions from Satellite Data Using High Performance Computing

Kumar, U., S. Ganguly, R. Nemani, K.S. Raja, C. Milesi, R. Sinha, A. Michaelis, P. Votava, H. Hashimoto, S. Li, W. Wang, S. Kalia, and S. Gayaka (2017), Exploring Subpixel Learning Algorithms for Estimating Global Land Cover Fractions from Satellite Data Using High Performance Computing, Remote Sens., 9, 1105, doi:10.3390/rs9111105.
PDF of Publication
Download from publisher's website
Research Program
Land Cover & Land Use Change Program (LCLUC)